
Getting Started with
System Identification Toolbox 7

Lennart Ljung

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with System Identification Toolbox

© COPYRIGHT 1988–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2007 First printing New for Version 7.0 (Release 2007a)
September 2007 Second printing Revised for Version 7.1 (Release 2007b)

About the Developers

About the Developers
System Identification Toolbox is developed in association with the following
leading researchers in the system identification field:

Lennart Ljung. Professor Lennart Ljung is with the Department of
Electrical Engineering at Linköping University in Sweden. He is a recognized
leader in system identification and has published numerous papers and books
in this area.

Qinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut National
de Recherche en Informatique et en Automatique (INRIA) and at Institut de
Recherche en Informatique et Systèmes Aléatoires (IRISA), both in Rennes,
France. He conducts research in the areas of nonlinear system identification,
fault diagnosis, and signal processing with applications in the fields of energy,
automotive, and biomedical systems.

Peter Lindskog. Dr. Peter Lindskog is employed by NIRA Dynamics
AB, Sweden. He conducts research in the areas of system identification,
signal processing, and automatic control with a focus on vehicle industry
applications.

Anatoli Juditsky. Professor Anatoli Juditsky is with the Laboratoire Jean
Kuntzmann at the Université Joseph Fourier, Grenoble, France. He conducts
research in the areas of nonparametric statistics, system identification, and
stochastic optimization.

About the Developers

Contents

Introduction to System Identification Toolbox

1
What Is System Identification Toolbox? 1-2

What You Can Accomplish Using This Toolbox 1-2
Types of Data You Can Model . 1-3
Stages of Identifying Dynamic Systems 1-3
Using Estimated Models . 1-4
Related Products . 1-4

Starting System Identification Toolbox 1-7

When to Use the GUI Versus the Command Line 1-8

How to Use System Identification Toolbox 1-9

Accessing the Documentation and Demos 1-11
Accessing Documentation . 1-11
Accessing Demos . 1-12

Learning More . 1-13

Choosing Models to Estimate

2
About Models . 2-3

What Is a Model? . 2-3
Categories of Models . 2-4
Supported Models . 2-6
Mathematical Description of Dynamic Models 2-7

When to Estimate Black-Box Models 2-8

vii

When to Estimate Models from First Principles 2-9

When to Estimate Linear Versus Nonlinear Models . . . 2-10

Choosing Models Based on Available Data 2-12
Supported Models for Time-Domain Data 2-12
Supported Models for Frequency-Domain Data 2-13

Supported Continuous-Time and Discrete-Time
Models . 2-15

Estimating Noise Models . 2-17
What Is a Noise Model? . 2-17
When to Estimate a Noise Model . 2-18
Types of Model Structures That Support Noise Models . . . 2-18

How Feedback Affects Model Choice 2-20
Unreliable Models in the Presence of Feedback 2-20
Detecting Feedback in the Data . 2-20

Modeling Multiple-Output Systems 2-22
Challenges of Modeling Multiple-Output Systems 2-22
Modeling Multiple Outputs Directly 2-22
Modeling Multiple Outputs as a Combination of

Single-Output Models . 2-22

Tutorial: Estimating Linear Models Using the
GUI

3
About This Tutorial . 3-3

Objectives . 3-3
Sample Data . 3-3

Preparing Data . 3-5
Loading Data into the MATLAB Workspace Browser 3-5
Opening the System Identification Tool GUI 3-5

viii Contents

Importing Data Arrays into the System Identification
Tool . 3-6

Plotting and Preprocessing Data . 3-11

Saving the GUI Session . 3-21

Estimating Preliminary Models . 3-23
Why Estimate Preliminary Models? 3-23
Using Quick Start to Estimate Preliminary Models 3-24
Validating Preliminary Models . 3-24
Types of Models Generated by Quick Start 3-28

Estimating Accurate Models . 3-30
Strategy for Getting Accurate Models 3-30
Estimating a Range of Model Orders 3-30
Estimating State-Space and ARMAX Models 3-35
Choosing the Best Model . 3-39

Viewing Model Parameters . 3-46
Viewing Model Parameter Values . 3-46
Viewing Parameter Uncertainties . 3-48

Exporting the Model to the MATLAB Workspace
Browser . 3-49

Exporting the Model to the LTI Viewer 3-51

Tutorial: Estimating Process Models Using the
GUI

4
About This Tutorial . 4-3

Objectives . 4-3
Sample Data . 4-3

What Is a Continuous-Time Process Model? 4-5

ix

Preparing Data . 4-6
Loading Data into the MATLAB Workspace Browser 4-6
Opening the System Identification Tool GUI 4-6
Importing Data Objects into the System Identification

Tool . 4-7
Plotting and Preprocessing Data . 4-10

Estimating Second-Order Process Models with Complex
Poles . 4-14
Estimating an Initial Model . 4-14
Tips for Specifying Known Parameters 4-19
Validating the Initial Model . 4-19

Refining the Process Model . 4-23
Estimating Models with Modified Settings 4-23
Comparing Models . 4-24

Viewing Process Model Parameters 4-27
Viewing Model Parameter Values . 4-27
Viewing Parameter Uncertainties . 4-28

Exporting the Model to the MATLAB Workspace
Browser . 4-30

Using Simulink with System Identification Toolbox . . 4-31
Preparing Input Data in the MATLAB Workspace

Browser . 4-31
Building the Simulink Model . 4-31
Configuring Blocks and Simulation Parameters 4-33
Running the Simulation . 4-37

Tutorial: Estimating Linear Models Using the
Command Line

5
About This Tutorial . 5-3

Objectives . 5-3
Sample Data . 5-3

x Contents

Preparing Data . 5-5
Loading Data into the MATLAB Workspace Browser 5-5
Plotting the Input/Output Data . 5-6
Removing Equilibrium Values from the Data 5-7
Using Objects to Represent Data for System

Identification . 5-8
Creating iddata Objects . 5-9
Plotting the Data . 5-11
Selecting a Subset of the Data . 5-15

Estimating Nonparametric Models 5-17
Why Estimate Nonparametric Models? 5-17
Estimating the Frequency Response 5-17
Estimating the Step Response . 5-20

Estimating Delays in the System . 5-22
Why Estimate Delays? . 5-22
Estimating Delays Using an ARX Model 5-22
Alternative Methods for Estimating Delays 5-23

Estimating Model Orders Using a Simple ARX
Structure . 5-25
Why Estimate Model Order? . 5-25
Commands for Estimating the Model Order 5-25
Model Order for the First Input-Output Combination 5-27
Model Order for the Second Input-Output Combination . . 5-30

Estimating Continuous-Time Process Models 5-33
Specifying the Structure of the Process Model 5-33
Viewing the Model Structure and Parameter Values 5-34
Specifying Initial Guesses for Time Delays 5-35
Estimating Model Parameters Using pem 5-36
Validating the Process Model . 5-38
Estimating a Noise Model to Improve Results 5-40

Estimating Black-Box Polynomial Models 5-44
Initial Orders for Estimating Polynomial Models 5-44
Estimating a Linear ARX Model . 5-45
Estimating a State-Space Model . 5-48
Estimating a Box-Jenkins Model . 5-51
Comparing Models . 5-53

xi

Simulating and Predicting Model Output 5-56
Simulating the Model Output . 5-56
Predicting the Future Output . 5-58

Tutorial: Estimating Nonlinear Black-Box
Models

6
About This Tutorial . 6-3

Objectives . 6-3
Sample Data . 6-3

What Are Nonlinear Black-Box Models? 6-5
Types of Nonlinear Black-Box Models 6-5
What Is a Nonlinear ARX Model? . 6-6
What Is a Hammerstein-Wiener Model? 6-6

Preparing Data . 6-8
Loading Data into the MATLAB Workspace Browser 6-8
Creating iddata Objects . 6-8
Starting the System Identification Tool 6-10
Importing Data Objects into the System Identification

Tool . 6-11

Estimating Nonlinear ARX Models 6-13
Estimating a Nonlinear ARX Model with Default

Settings . 6-13
Plotting Nonlinearity Cross-Sections for Nonlinear ARX

Models . 6-17
Changing the Nonlinear ARX Model Structure 6-20
Selecting a Subset of Regressors in the Nonlinear Block . . 6-22
Changing the Nonlinearity Estimator in a Nonlinear ARX

Model . 6-24
Selecting the Best Model . 6-25

Estimating Hammerstein-Wiener Models 6-27
Estimating Hammerstein-Wiener Models with Default

Settings . 6-27

xii Contents

Plotting the Nonlinearities and Linear Transfer
Function . 6-31

Changing the Hammerstein-Wiener Model Structure 6-35
Changing the Nonlinearity Estimator in a

Hammerstein-Wiener Model . 6-37
Selecting the Best Model . 6-39

Index

xiii

xiv Contents

1

Introduction to System
Identification Toolbox

What Is System Identification
Toolbox? (p. 1-2)

Overview of how System
Identification Toolbox supports
modeling dynamic systems and a
summary of related products that
extend System Identification Toolbox
capabilities.

Starting System Identification
Toolbox (p. 1-7)

How to open the System
Identification Tool GUI and get more
information about command-line
syntax.

When to Use the GUI Versus the
Command Line (p. 1-8)

When to use the GUI versus the
System Identification Toolbox
commands.

How to Use System Identification
Toolbox (p. 1-9)

Summary of typical tasks in the
system identification workflow.

Accessing the Documentation and
Demos (p. 1-11)

Information about installing the
product, using the documentation,
and accessing demos.

Learning More (p. 1-13) References for learning more about
modeling dynamic systems and
system identification theory.

1 Introduction to System Identification Toolbox

What Is System Identification Toolbox?

In this section...

“What You Can Accomplish Using This Toolbox” on page 1-2

“Types of Data You Can Model” on page 1-3

“Stages of Identifying Dynamic Systems” on page 1-3

“Using Estimated Models” on page 1-4

“Related Products” on page 1-4

What You Can Accomplish Using This Toolbox
System Identification Toolbox extends the MATLAB® computational
environment for estimating linear and nonlinear mathematical models to fit
measured data from dynamic systems.

System identification is especially useful for modeling systems that you cannot
easily represent in terms of first principles. In this case, you use System
Identification Toolbox to perform black-box modeling, where the measured
data determines the model structure. Examples of complex dynamic systems
requiring black-box models include engine subsystems, flight dynamics
systems, thermofluid processes, and electromechanical systems.

You can also use System Identification Toolbox to compute the coefficients of
ordinary differential and difference equations for systems modeled from first
principles. Such models are called grey-box models.

For real-time applications in adaptive control, adaptive filtering, or adaptive
prediction, you can use System Identification Toolbox to perform recursive
parameter estimation.

You can validate models directly after each estimation to help you select the
best dynamic model for your system.

For an overview of using System Identification Toolbox, see “How to Use
System Identification Toolbox” on page 1-9.

1-2

What Is System Identification Toolbox?

Types of Data You Can Model
For linear models, System Identification Toolbox supports both time-
and frequency-domain data with single or multiple inputs and outputs.
Time-domain data can be either real or complex.

For nonlinear models, this toolbox supports only time-domain data.

Time-domain data is one or more input variables u(t) and one or more
output variables y(t), sampled as a function of time. A special case of
time-domain data is time-series data, which is one or more outputs y(t) and
no measured input. Frequency-domain data is the Fourier transform of the
input and output time-domain signals. Frequency-response data, also called
frequency-function data, represents complex frequency-response values for a
linear system characterized by its transfer function G.

You can measure frequency-response data values directly using a
spectrum analyzer, for example. In this section, frequency-domain and
frequency-response are both referenced as frequency-domain data for the sake
of brevity.

For time-series data, you can estimate both linear and nonlinear models.

Stages of Identifying Dynamic Systems
The general system identification process might include the following stages:

1 Experimental design and data acquisition

2 Data analysis and preprocessing, including plotting the data, removing
offsets and linear trends, filtering, resampling, and selecting regions of
interest

3 Estimation and validation of models

4 Model analysis and transformation, such as linear analysis, reducing
model order, and converting between discrete-time and continuous-time
representations.

5 Model usage for intended applications, such as simulation or prediction
of output values or control design

1-3

1 Introduction to System Identification Toolbox

System Identification Toolbox supports all of these stages except data
acquisition. This toolbox provides some support for experimental design by
enabling you to generate input signals with different properties. You can also
model data to validate and refine your experimental design.

Using Estimated Models
You can use System Identification Toolbox commands to simulate or predict
model output. You can also import models into Simulink®.

In control design applications, you might use System Identification Toolbox
to model a plant for control design. For example, you can import your linear
plant model into Control System Toolbox, Model Predictive Control Toolbox,
and Robust Control Toolbox.

Related Products
The following table summarizes the products that extend and complement
System Identification Toolbox. For current information about these and other
MathWorks products, point your Web browser to:

www.mathworks.com

Products That Extend System Identification Toolbox

Product Description

Control System Toolbox Provides extensive tools to analyze
plant models created in System
Identification Toolbox and to tune
control systems based on these plant
models.

Model Predictive Control Toolbox Uses the linear plant models created
in System Identification Toolbox for
predicting plant behavior that is
optimized by the model-predictive
controller.

1-4

What Is System Identification Toolbox?

Products That Extend System Identification Toolbox (Continued)

Product Description

Neural Network Toolbox Provides flexible neural-network
structures for estimating nonlinear
models using System Identification
Toolbox.

Optimization Toolbox When this toolbox is installed,
you have the option of using the
lsqnonlin optimization algorithm
for nonlinear identification.

Robust Control Toolbox Provides tools to design
multiple-input and multiple-output
(MIMO) control systems based on
plant models created in System
Identification Toolbox. Robust
Control Toolbox lets you assess
robustness based on confidence
bounds for the identified plant
model.

1-5

1 Introduction to System Identification Toolbox

Products That Extend System Identification Toolbox (Continued)

Product Description

Signal Processing Toolbox Provides additional options for:

• Filtering
(System Identification
Toolbox provides only the
fifth-order Butterworth filter.)

• Spectral analysis

After using the advanced data
processing capabilities of Signal
Processing Toolbox, you can import
the data into System Identification
Toolbox for modeling.

Simulink Provides System Identification
blocks for simulating the models
you identified using System
Identification Toolbox. Also provides
blocks for model estimation.

1-6

Starting System Identification Toolbox

Starting System Identification Toolbox
After you have installed System Identification Toolbox, you can use either the
System Identification Tool GUI or the command-line syntax.

To open the System Identification Tool GUI:

• Select Start > Toolboxes > System Identification from the MATLAB
Command Window.

Alternatively, you can open the System Identification Tool GUI by typing the
following command at the MATLAB prompt:

ident

To use the toolbox commands, type the commands directly in the MATLAB
Command Window. For more information about the commands, see the
corresponding reference pages.

For information about whether to use the GUI or the command line, see
“When to Use the GUI Versus the Command Line” on page 1-8.

1-7

1 Introduction to System Identification Toolbox

When to Use the GUI Versus the Command Line
New users should start by using the System Identification Tool GUI to become
familiar with the product.

You can work either in the GUI or at the command line to preprocess data,
and estimate, validate, and compare models.

For a tutorial that walks you through typical command-line tasks, see Chapter
5, “Tutorial: Estimating Linear Models Using the Command Line”.

However, the following operations are available only at the command line:

• Generating input and output data (see idinput).

• Estimating coefficients of linear and nonlinear ordinary differential or
difference equations (grey-box models).

• Using recursive online estimation methods. See the topics on estimating
linear models recursively in the System Identification Toolbox User’s Guide.

• Converting between continuous-time and discrete-time (see c2d and d2c).

• Converting models to LTI objects (see the ss, tf, and zpk reference pages).

Note Conversions to LTI objects require Control System Toolbox.

Tip To learn more about estimating and validating models at the command
line, see Chapter 5, “Tutorial: Estimating Linear Models Using the Command
Line”.

1-8

How to Use System Identification Toolbox

How to Use System Identification Toolbox
System identification is an iterative process, where you estimate many
different models for your data and compare model performance. Ultimately,
you choose the simplest model that best describes the dynamics of your
system.

Because System Identification Toolbox lets you estimate different model
structures quickly, you should try many different structures to see which one
gives the best results.

A system identification workflow might include the following tasks:

1 Prepare data for system identification by:

• Importing data into the MATLAB Workspace browser.

• Importing data into the System Identification Tool GUI or creating an
iddata or idfrd object in the MATLAB Command Window, depending
on which environment you are using.

• Plotting data to examine both time- and frequency-domain behavior.

To analyze the data for the presence of constant offsets and trends, delay,
feedback, and signal excitation levels, you can use the advice command.

• Preprocessing data by removing offsets and linear trends, interpolating
missing values, filtering to emphasize a specific frequency range, or
resampling using a different time interval.

2 Estimate linear or nonlinear models:

• Time-domain correlation analysis models

• Frequency-response models using spectral analysis

• Low-order transfer functions (process models)

• Polynomial models

• State-space models

• Nonlinear black-box models

• User-defined (grey-box) models

1-9

1 Introduction to System Identification Toolbox

3 Validate models.

When you do not achieve a satisfactory model, try a different model
structure and order or try another identification algorithm.

You might need to preprocess your data before doing further estimation.
For example, if there is too much high-frequency noise in your data, you
might need to filter or decimate (resample) the data before modeling.

4 (Optional) Transform model representation by:

• Transforming between discrete-time and continuous-time representation.

• Transforming between frequency-response, state-space, and polynomial
forms.

• Reducing model order based on pole-zero cancellations.

• Linearizing a nonlinear plant. For more information about these
functions, see the lintan and linapp reference pages.

5 Simulate or predict model output.

6 Design a controller for the estimated plant using other MathWorks
products.

You can import an estimated linear model into Control System Toolbox,
Model Predictive Control Toolbox, Robust Control Toolbox, or Simulink
for controller design.

1-10

Accessing the Documentation and Demos

Accessing the Documentation and Demos

In this section...

“Accessing Documentation” on page 1-11

“Accessing Demos” on page 1-12

Accessing Documentation
MathWorks technical documentation is available online from the Help menu
from the MATLAB desktop.

System Identification Toolbox documentation contains the following
components:

• Getting Started — Provides essential information for mapping your
problem to the capabilities of System Identification Toolbox. Step-by-step
tutorials walk you through the most common system identification tasks.

• User’s Guide — Fully describes the System Identification Toolbox tasks.

• Reference — Describes the essential syntax and usage of System
Identification Toolbox objects, methods, and functions.

• Release Notes — Describes important changes in the current version of
System Identification Toolbox and compatibility considerations.

New Users. If you are new to System Identification Toolbox, this Getting
Started documentation will help you begin using System Identification
Toolbox quickly. After a brief introduction to the types of models you can
estimate, follow the steps in the tutorials to estimate models in the System
Identification Tool graphical user interface (GUI) or the MATLAB Command
Window.

Experienced Users. If you are familiar with System Identification Toolbox,
search or browse the documentation for information about specific tasks.

1-11

1 Introduction to System Identification Toolbox

Accessing Demos
System Identification Toolbox provides demo files that show you how to
estimate models for dynamic systems from measured data. The available
demos include both case studies and tutorials.

To access the demos in the Help browser, type the following command at
the MATLAB prompt:

demo

In the Demos pane, select Toolboxes > System Identification to open
the list of available demos.

1-12

Learning More

Learning More
The goal of the System Identification Toolbox documentation is to provide you
with the necessary information to use this product. Additional resources are
available to help you learn more about specific aspects of system identification
theory and applications.

The following book describes methods for system identification and physical
modeling:

Ljung, L., and T. Glad. Modeling of Dynamic Systems. PTR Prentice Hall,
Upper Saddle River, NJ, 1994.

These books provide detailed information about system identification theory
and algorithms:

• Ljung, L. System Identification: Theory for the User. Second edition. PTR
Prentice Hall, Upper Saddle River, NJ, 1999.

• Söderström, T., and P. Stoica. System Identification. Prentice Hall
International, London, 1989.

For information about working with frequency-domain data, see the following
article:

Pintelon, R., and J. Schoukens. System Identification. A Frequency Domain
Approach. IEEE Press, New York, 2001.

For more information about systems and signals, see the following book:

Oppenheim, J., and Willsky, A.S. Signals and Systems. PTR Prentice Hall,
Upper Saddle River, NJ, 1985.

The following textbook describes numerical techniques for parameter
estimation using criterion minimization:

Dennis, J.E., Jr., and R.B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. PTR Prentice Hall, Upper Saddle
River, NJ, 1983.

1-13

1 Introduction to System Identification Toolbox

1-14

2

Choosing Models to
Estimate

About Models (p. 2-3) Definition of models, summary
of supported models types, and a
general mathematical description of
dynamic models.

When to Estimate Black-Box Models
(p. 2-8)

Criteria for choosing to estimate
black-box models for systems that
you cannot easily represent in terms
of known physical laws.

When to Estimate Models from First
Principles (p. 2-9)

Criteria for choosing to estimate
models from first principles.

When to Estimate Linear Versus
Nonlinear Models (p. 2-10)

Criteria for choosing to estimate
linear or nonlinear models.

Choosing Models Based on Available
Data (p. 2-12)

Types of models you can
estimate from time-domain and
frequency-domain data.

Supported Continuous-Time and
Discrete-Time Models (p. 2-15)

Summary of supported
continuous-time and discrete-time
models.

Estimating Noise Models (p. 2-17) Definition of noise model, criteria for
when you might want to estimate a
noise model, and model structures
that support a noise model.

2 Choosing Models to Estimate

How Feedback Affects Model Choice
(p. 2-20)

Definition of noise model, criteria for
when you might want to estimate a
noise model, and model structures
that support a noise model.

Modeling Multiple-Output Systems
(p. 2-22)

Supported models for
multiple-output systems.

2-2

About Models

About Models

In this section...

“What Is a Model?” on page 2-3

“Categories of Models” on page 2-4

“Supported Models” on page 2-6

“Mathematical Description of Dynamic Models” on page 2-7

What Is a Model?
A model is a tool you use to answer questions about the system without having
to perform experiments. For example, you might use a model to simulate
the output of a system for a given input and analyze the system response.
Alternatively, you might be interested in using the model to predict future
output of a system based on previous inputs and outputs.

Models describe the relationship between one or more measured input signals,
u(t), and one or more measured output signals, y(t). Input and output signals
can be measured in the time or frequency domain.

���� ����

����

In real systems, there are additional inputs that affect the system output
and that you cannot measure or control. Such unmeasured inputs are called
disturbances or noise, e(t). For example, if the system is an airplane, its
inputs might be the positions of various control surfaces, such as ailerons and
elevators. The system outputs might be the airplane orientation, velocity,
and position. The noise might be turbulence and wind gusts that affect the
outputs.

2-3

2 Choosing Models to Estimate

You get the best results when you estimate models using two independent
data sets: one data set for estimation (estimation data), and the other data
set for validation (validation data).

Categories of Models

• “User-Defined (Grey-Box) Models” on page 2-4

• “Black-Box Models” on page 2-4

• “Continuous-Time Models” on page 2-6

• “Discrete-Time Models” on page 2-6

User-Defined (Grey-Box) Models
Grey-box models are differential or difference equations that you construct
from first principles based on physical insight into the system. In this case,
you already know the model structure and estimate its parameters.

Black-Box Models
Black-box models are flexible mathematical structures that are not based
on first principles. You can estimate both nonparametric and parametric
black-box models. In case of parametric models, the data helps you to both
select the best model structure and estimate the parameters.

System Identification Toolbox supports the following types of black-box
models:

• Nonparametric models

• Parametric models

Nonparametric Models. Nonparametric models are black-box models that
consist of data tables representing the impulse response, step response, and
frequency response of the system. Because nonparametric models are not
represented by a compact mathematical formula with adjustable parameters,
such models do not impose a specific mathematical structure on your system.

Nonparametric models serve well as preliminary models that you can use
to analyze system characteristics. For example, estimating the transient

2-4

About Models

response provides insight into the rise time and settling time of the system
response. Similarly, estimating frequency response might indicate the order
of the system, locations of resonances and notches, crossover frequencies, and
the bandwidth of the system.

You can estimate nonparametric models using the following methods:

• Correlation analysis estimates the impulse or step response of the system,
also called transient response.

• Spectral analysis estimates the frequency response of the system.

Frequency response describes the steady-state response of a system to
sinusoidal inputs. For a linear system, a sinusoidal input of a specific
frequency results in an output that is also a sinusoid with the same
frequency, but with a different amplitude and phase. The frequency
response function describes the amplitude change and phase shift as a
function of frequency. In other words, the frequency response function is
the Laplace transform of the impulse response that is evaluated on the
imaginary axis. You can use a Bode plot to visualize the frequency response
of the system, which shows the amplitude change and the phase shift as a
function of the sinusoid frequency.

Parametric Models. Parametric models are black-box models that have a
well-defined mathematical structure, and this structure is fit to the time-
and frequency-domain data by adjusting the coefficient values, or model
parameters.

System Identification Toolbox supports several linear and nonlinear model
structures.

The simplest parametric models are linear, polynomial, discrete-time
difference equations. For example, the following equation represents the
ARX polynomial structure:

y t a y t T a y t T
b u t T b u t T

() () ()
() ()

+ − + − =
− + −

1 2

1 2

2
2

y(t) is the output, u(t) is the input, and T is the sampling interval.

2-5

2 Choosing Models to Estimate

Other supported linear parametric models include ARX, ARMAX, Box-Jenkins
(BJ), output-error (OE), and state-space models. One important difference
between these models is the way they model noise.

In case of nonlinear black-box models, you can estimate nonlinear ARX and
Hammerstein-Wiener structures.

Continuous-Time Models
A continuous-time model describes the relationship between continuous-time
input and output signals. You typically represent continuous-time systems
using differential equations.

System Identification Toolbox lets you estimate linear continuous-time
models directly. For example, you can estimate low-order transfer functions,
called continuous-time process models, from time- or frequency-domain
data. You can also estimate a continuous-time model of any structure from
frequency-domain data.

Discrete-Time Models
In practice, input and output signals are collected at specific time intervals, or
samples. A discrete-time model expresses the relationship between the values
of the signals at the sampling instants. Such models are typically described
by difference equations.

Supported Models
System Identification Toolbox supports the following types of linear and
nonlinear models:

• Nonparametric models, including transient-response and
frequency-response models

• Linear parametric models:

- Low-order, continuous-time transfer functions (process models)

- Polynomial models, including ARX, ARMAX, Box-Jenkins, and
output-error models

- Linear state-space models

2-6

About Models

• Nonlinear black-box models

• Grey-box models, represented by linear or nonlinear ordinary differential
equations or ordinary difference equations

• Time-series models

Which models you estimate depends on the nature of the dynamic system, on
the type of behavior that you expect, and on the intended use of the model.

In some cases, a specific mathematical form is preferable because the
estimated parameters have a physical interpretation.

If you require estimates of dynamic characteristics without detailed
parametric models, you can use nonparametric models.

Mathematical Description of Dynamic Models
As you work with System Identification Toolbox, you estimate models that are
special cases of the following general mathematical description of dynamic
systems:

y t g u v t() (,) ()= +θ

The output y(t) of a system is determined by g, which might be a function of all
previous inputs u(s) (s t≤) and system parameters θ . v(t) is the output noise.

For nonlinear models, g can take a variety of forms.

For linear models, the general symbolic model description is given by:

y Gu He= +

G is an operator that describes the system dynamics from the input to the
output. G is often called a transfer function between u and y. H is an operator
that describes the properties of the additive output disturbance and is called a
disturbance model, or noise model.

2-7

2 Choosing Models to Estimate

When to Estimate Black-Box Models
System identification is especially useful for modeling systems that you
cannot easily represent in terms of first principles or known physical laws. In
this case, System Identification Toolbox uses measured data to help determine
the structure of the resulting black-box model. The parameters of a black-box
model might not have a physical interpretation.

You can estimate several black-box models that have different orders and
choose the model that has the best performance. Black-box models can be
linear or nonlinear models. Black-box models can also be continuous-time or
discrete-time models.

Black-box modeling has the following advantages:

• You do not need to know the structure and order of your model to get
started quickly.

• You can estimate many model structures and compare them to choose the
best one.

Black-box model structures differ based on how they model noise. For
example, some structures, such as the Box-Jenkins (BJ) structure, decouple
the dynamics from the noise.

Tip Unless you have specific requirements about how to handle noise or
insight into how noise affects your system, you do not need to worry about
which structure is correct. Instead, you can estimate different structures and
use the validation process to identify a model with the best performance.

For more information about modeling noise, see “Estimating Noise Models”
on page 2-17.

2-8

When to Estimate Models from First Principles

When to Estimate Models from First Principles
If you understand the physics of your system and can represent the system
using an ordinary differential or difference equation (ODE), then you can use
System Identification Toolbox to perform grey-box modeling.

A grey-box model has a known mathematical structure and unknown
parameters. You capture the ODE and the parameters you want to estimate
in an M-file or MEX-file, and use System Identification Toolbox to estimate
the model parameters.

Grey-box modeling has the following advantages over black-box modeling:

• You can impose known constraints on model characteristics, such as model
parameters and noise variance.

• There are potentially fewer parameters to estimate.

• You can specify couplings between parameters when defining the model
structure.

• In the nonlinear case, you can specify the dynamic equations explicitly.

Grey-box modeling is preferred. However, grey-box modeling requires that
you know the relationship between the system variables and the parameters,
which can be time consuming.

For detailed information about grey-box modeling, see the topics on estimating
linear and nonlinear grey-box models in the System Identification Toolbox
User’s Guide.

2-9

2 Choosing Models to Estimate

When to Estimate Linear Versus Nonlinear Models
System Identification Toolbox lets you estimate both linear and nonlinear
models. In practice, all systems are nonlinear and the output is a nonlinear
function of the input variables. However, a linear model is often sufficient to
accurately describe the system dynamics.

For a grey-box model, its linear or nonlinear structure is set by its differential
or difference equations.

For a black-box model, you can choose whether to estimate linear or nonlinear
models. Linear approximations are very useful because they are simple and
provide good results in many situations. Therefore, always estimate linear
models first and see how well these models represent the dynamics.

Note For nonlinear black-box models, you can only estimate discrete-time
models using time-domain data.

2-10

When to Estimate Linear Versus Nonlinear Models

Follow these guidelines to estimate nonlinear black-box models:

• When you have physical insight that the system is nonlinear, try
transforming your input and output variables such that the relationship
between the transformed variables is linear.

For example, you might be dealing with a process that has current and
voltage as inputs to an immersion heater, and the temperature of the heated
liquid as an output. In this case, the output depends on the inputs via the
power of the heater, which is equal to the product of current and voltage.
Instead of fitting a nonlinear model to two-input and one-output data, you
can create a new input variable by taking the product of current and voltage
and then fitting a linear model to the single-input/single-output data.

• You plot the response of the system to a specific input and notice that the
responses are different depending on the input level or input sign. For
example, you might see that the output response to an input step up is
much faster than the response to a step down. This response behavior
indicates that the system is nonlinear and you need a nonlinear model.

• You try many linear models of varying complexity, but the model output
does not adequately reproduce the measured output. This inability of the
model to reproduce measured output might be caused by noisy data or by
nonlinear system behavior.

2-11

2 Choosing Models to Estimate

Choosing Models Based on Available Data

In this section...

“Supported Models for Time-Domain Data” on page 2-12

“Supported Models for Frequency-Domain Data” on page 2-13

Supported Models for Time-Domain Data

Continuous-Time Models
To get a linear, continuous-time model of arbitrary structure for time-domain
data, you can estimate a discrete-time model, and then use d2c to transform
it to a continuous-time model.

However, you can estimate the following types of continuous-time models
directly:

• Low-order transfer functions (process models)

• Linear polynomial models, including ARX and output-error (OE) models

• State-space models

Discrete-Time Models
You can estimate any linear and nonlinear discrete-time model supported by
System Identification Toolbox.

Grey-Box Models
For linear and nonlinear grey-box models, you can estimate both
continuous-time and discrete-time models from time-domain data.

Nonlinear Models
You can estimate all supported discrete-time nonlinear black-box models
for time-domain data, which includes Hammerstein-Wiener and nonlinear
ARX models.

2-12

Choosing Models Based on Available Data

You can also estimate nonlinear grey-box models for time-domain data.

Supported Models for Frequency-Domain Data
Frequency-domain data comes in two types:

• Continuous-time data

• Discrete-time data

To designate discrete-time data, you must set the sampling interval of the data
to the experimental data sampling interval. To designate continuous-time
data, you must set the sampling interval of the data to zero.

You can set the data sampling interval when you import the data set into the
System Identification Tool GUI, or when you create the data object at the
command line. Setting the sampling interval to zero corresponds to taking a
Fourier transform of continuous-time data.

Continuous-Time Models
To get a linear, continuous-time model of arbitrary structure for time-domain
data, you can estimate a discrete-time model, and then use d2c to transform
it to a continuous-time model.

You can estimate the following types of continuous-time models directly:

• Low-order transfer functions (process models)

• Linear polynomial models, including ARX and output-error (OE) models

• State-space models

From continuous-time frequency-domain data, you can estimate
continuous-time state-space models. From discrete-time frequency-domain
data, you can estimate continuous-time black-box models with canonical
parameterization.

Discrete-Time Models
You can estimate only ARX and output-error (OE) polynomial models
using frequency-domain data in System Identification Toolbox. Other

2-13

2 Choosing Models to Estimate

model structures include noise models, which are not supported for
frequency-domain data.

Grey-Box Models
For linear grey-box models, you can estimate both continuous-time and
discrete-time models from frequency-domain data.

Nonlinear grey-box models are supported only for time-domain data.

Nonlinear Models
Frequency-domain data is not relevant to nonlinear models. Thus, nonlinear
models support only time-domain data.

2-14

Supported Continuous-Time and Discrete-Time Models

Supported Continuous-Time and Discrete-Time Models
For linear and nonlinear grey-box models, you can specify any ordinary
differential or difference equation to represent your continuous-time or
discrete-time model, respectively. In the linear case, both time-domain
and frequency-domain data are supported. In the nonlinear case, only
time-domain data is supported.

The following tables summarize supported continuous-time and discrete-time
parametric models.

Supported Continuous-Time Models

Model Type Description

Low-order transfer functions
(process models)

Estimate low-order transfer functions (up to three free poles)
from either time- or frequency-domain data.

Linear, black-box polynomial
models:

• ARX

• ARMAX

• Output-error

• Box-Jenkins

To get a linear, continuous-time model of arbitrary
structure from time-domain data, you can estimate a
discrete-time model, and then use d2c to transform it into a
continuous-time model.

For frequency-domain data, you can directly estimate only
the ARX and output-error (OE) continuous-time models.
Other structures include noise models and are not supported
for frequency-domain data.

State-space models To get a linear, continuous-time model of arbitrary
structure for time-domain data, you can estimate a
discrete-time model, and then use d2c to transform it into a
continuous-time model.

For frequency-domain data, you can estimate
continuous-time state-space models directly.

Linear grey-box models Estimate ordinary differential equations (ODEs) from either
time- or frequency-domain data.

Nonlinear grey-box models Estimate arbitrary differential equations (ODEs) from
time-domain data.

2-15

2 Choosing Models to Estimate

Supported Discrete-Time Models

Model Type Description

Linear, black-box polynomial
models:

• ARX

• ARMAX

• Output-error

• Box-Jenkins

• State-space

Estimate arbitrary-order, linear parametric models from
time- or frequency-domain data.

To get a discrete-time model, your data sampling interval
must be set to the (nonzero) value you used to sample in
your experiment.

Nonlinear black-box models:

• Nonlinear ARX

• Hammerstein-Wiener

Estimate from time-domain data only.

Linear grey-box models Estimate ordinary difference equations from time- or
frequency-domain data.

Nonlinear grey-box models Estimate ordinary difference equations from time-domain
data.

2-16

Estimating Noise Models

Estimating Noise Models

In this section...

“What Is a Noise Model?” on page 2-17

“When to Estimate a Noise Model” on page 2-18

“Types of Model Structures That Support Noise Models” on page 2-18

What Is a Noise Model?
For linear models, the general symbolic model description is given by the
following equation:

y Gu He= +

G is an operator that describes the system dynamics from the input to the
output. e is an unmeasured input that is the noise source. H is an operator
that describes how the system forms the additive noise from e and is called a
disturbance model, or noise model.

In this description of the additive noise, the noise source e is white noise,
which means that it is entirely unpredictable. In other words, it is impossible
to guess the value of e(t) regardless of how accurately you measured the past
data up to time t-1.

The actual disturbance contribution to the output, He, has real significance
and contains all the known and unknown influences on the measured y not
included in the input u. Therefore, if you repeat and experiment with the
same input, He explains why the output signal is typically different.

The source of the noise, e, need not have a physical significance. In the case
of an airplane, it is sufficient to estimate the noise in a black-box manner as
arising from a white noise source via a transfer function H. Thus, you do not
need to know how the wind gusts and turbulence are generated physically
and all that matters are the characteristics of He, such the frequency content
or spectrum of He.

2-17

2 Choosing Models to Estimate

When to Estimate a Noise Model
In the simplest case, you do not estimate a noise model. Instead, you can
handle the additive noise term by setting H = 1 , which corresponds to the
noise source e affecting the output directly. The resulting model is called
the output-error model.

Tip Omit estimating a noise model when you have a good signal-to-noise ratio
(SNR). With a good SNR, information about G in the data is not corrupted.

You might choose to estimate a noise model in the following situations:

• You are specifically interested in a noise model, such as when developing
noise-cancelation and noise-attenuation technologies, or for disturbance
rejection in control design applications.

• You want to use the noise characteristics to improve the estimation of the
dynamic model, G, by emphasizing the frequencies that are least affected
by noise during the estimation.

Tip To see if estimating a noise model H might help you improve the
dynamic model G, estimate models with and without noise and compare
their simulated outputs.

Types of Model Structures That Support Noise Models
You can use System Identification Toolbox to estimate a deterministic noise
model in addition to the dynamic model for linear model structures.

If you decide that a good noise model is important, choose the ARMAX,
Box-Jenkins, or state-space model structures that provide additional
parameters for modeling noise. For more information about these model
structures, see the topic on estimation linear parametric models in the System
Identification Toolbox User’s Guide.

2-18

Estimating Noise Models

Output-error (OE) and ARX models are not sufficiently flexible for modeling
noise. Output-error models produce a trivial noise model with H=1, and ARX
models produce a noise model that is coupled to the dynamics.

Note Nonlinear ARX and Hammerstein-Wiener models do not support
parametric noise models.

2-19

2 Choosing Models to Estimate

How Feedback Affects Model Choice

In this section...

“Unreliable Models in the Presence of Feedback” on page 2-20

“Detecting Feedback in the Data” on page 2-20

Unreliable Models in the Presence of Feedback
When you estimate a model structure that includes a flexible noise model, the
estimation methods work equally well for systems with and without feedback.
Feedback means that your system operates in a closed loop and the past
outputs affect the current inputs. Examples of structures with flexible noise
models include ARMAX, Box-Jenkins (BJ), and state-space models.

However, the following models are unreliable when feedback is present in
your system:

• Time-domain correlation-analysis models estimated using cra.

If you estimate the impulse response using impulse, the response before
time equal to 0 is caused by the feedback mechanism and does not represent
system dynamics.

• Frequency-analysis models estimated using the etfe, spa, or spafdr
spectral-analysis methods.

• State-spate models estimated using the noniterative estimation method
n4sid.

• Model structures that have inaccurate noise models, such as output-error
(OE) and state-space models with the property DisturbanceModel set to
None. For more information, see the reference pages corresponding to these
models.

Detecting Feedback in the Data
If you are unsure about the presence of feedback, use System Identification
Toolbox to detect feedback in your data:

• Use the advice command on your data set. Also, you can use the feedback
command to get detailed information about the nature of the feedback.

2-20

How Feedback Affects Model Choice

• Use the impulse command on your data set to plot the estimated impulse
response. Significant values of the impulse response at negative lags might
indicate feedback.

• On residual analysis plots, significant correlation between residuals and
inputs at negative lags indicates feedback. For more information about
residual analysis, see the corresponding section in the System Identification
User’s Guide.

2-21

2 Choosing Models to Estimate

Modeling Multiple-Output Systems

In this section...

“Challenges of Modeling Multiple-Output Systems” on page 2-22

“Modeling Multiple Outputs Directly” on page 2-22

“Modeling Multiple Outputs as a Combination of Single-Output Models”
on page 2-22

Challenges of Modeling Multiple-Output Systems
Modeling multiple-output systems is more challenging because input/output
couplings require additional parameters to obtain a good fit and more-complex
models. In general, a model should be better when more inputs are included.
Including more outputs typically leads to worse simulation results because it
is more difficult to reproduce the behavior of several outputs.

Modeling Multiple Outputs Directly
You can estimate the following types of models for multiple-output data:

• Impulse- and step-response models using correlation analysis

• Frequency-response models using spectral analysis

• Linear ARX models or state-space models

• Nonlinear ARX and Hammerstein-Wiener models

State-space models provide the easier approach for estimating multiple-output
models directly.

Modeling Multiple Outputs as a Combination of
Single-Output Models
You may find that it is more difficult for a single model to explain the behavior
of several outputs. If you get a poor fit estimating a multiple-output model
directly, you can try building models for subsets of the most important input
and output channels.

2-22

Modeling Multiple-Output Systems

Use this approach when no feedback is present in the dynamic system and
there are no couplings between the outputs. If you are unsure about the
presence of feedback, see “Detecting Feedback in the Data” on page 2-20.

To construct partial models, use subreferencing to create partial data sets,
such that each data set contains all inputs and one output. For more
information about creating partial data sets, see the following sections in the
System Identification Toolbox User’s Guide:

• For working in the System Identification Tool GUI, see the topic about
creating data sets from selected channels.

• For working at the command line, see the topic about subreferencing data
objects.

After validating the single-output models, use vertical concatenation to
combine these partial models into a single multiple-output model. For more
information about concatenation, see the corresponding topic in the System
Identification Toolbox User’s Guide.

You can try refining the multiple-output model using the original
(multiple-output) data set.

2-23

2 Choosing Models to Estimate

2-24

3

Tutorial: Estimating Linear
Models Using the GUI

About This Tutorial (p. 3-3) Overview of the tutorial for
estimating linear models from
single-input/single-output (SISO)
data.

Preparing Data (p. 3-5) How to load the sample MAT-file into
the MATLAB Workspace browser,
open the System Identification Tool
GUI, import data into the GUI from
the MATLAB Workspace browser,
and plot and preprocess the data.

Saving the GUI Session (p. 3-21) How to save a System Identification
Tool session, including imported
data sets and generated models.

Estimating Preliminary Models
(p. 3-23)

How to estimate models using Quick
Start to assess the complexity of the
data and the performance of several
polynomial and state-space models.

Estimating Accurate Models (p. 3-30) How to get accurate, discrete-time
models.

Viewing Model Parameters (p. 3-46) How to view estimated model
parameters and the history of
operations on the model and the
corresponding data.

3 Tutorial: Estimating Linear Models Using the GUI

Exporting the Model to the MATLAB
Workspace Browser (p. 3-49)

How to make the model available
to operations in the MATLAB
Command Window for further
processing with this toolbox or other
MathWorks products.

Exporting the Model to the LTI
Viewer (p. 3-51)

How to export models to the LTI
Viewer, which is available if you
installed Control System Toolbox.

3-2

About This Tutorial

About This Tutorial

In this section...

“Objectives” on page 3-3

“Sample Data” on page 3-3

Objectives
Estimate and validate linear models from single-input/single-output (SISO)
data to find the one that best represents your system dynamics.

After completing this tutorial, you will be able to accomplish the following
tasks using the System Identification Tool GUI:

• Import data arrays from the MATLAB Workspace browser into the GUI.

• Plot the data.

• Preprocess data by removing offsets from the input and output signals.

• Estimate, validate, and compare linear models.

• Export models to the MATLAB Workspace browser.

This tutorial is based on the example in System Identification: Theory for the
User, Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Sample Data
The sample data is the MAT-file dryer2.mat, which contains
single-input/single-output (SISO) time-domain data from Feedback Process
Trainer PT326.The input and output signals each contain 1000 data samples.

This system heats the air at the inlet using a mesh of resistor wire, much like
a hair dryer. The input is the power supplied to the resistor wires, and the
output is the air temperature at the outlet.

3-3

3 Tutorial: Estimating Linear Models Using the GUI

Note The tutorial uses time-domain data to demonstrate how you can
estimate linear models. The same workflow also applies to frequency-domain
data.

3-4

Preparing Data

Preparing Data

In this section...

“Loading Data into the MATLAB Workspace Browser” on page 3-5

“Opening the System Identification Tool GUI” on page 3-5

“Importing Data Arrays into the System Identification Tool” on page 3-6

“Plotting and Preprocessing Data” on page 3-11

Loading Data into the MATLAB Workspace Browser
Load sample data in dryer2.mat by typing the following command at the
MATLAB prompt:

load dryer2

This command loads the data into the MATLAB Workspace browser as two
column vectors, u2 and y2, respectively. The variable u2 is the input data and
y2 is the output data.

Opening the System Identification Tool GUI
To open the System Identification Tool GUI, type the following command at
the MATLAB prompt:

ident

3-5

3 Tutorial: Estimating Linear Models Using the GUI

The default session name, Untitled, appears in the title bar.

Importing Data Arrays into the System Identification
Tool
You can import the single-input/single-output (SISO) data from a sample data
file dryer2.mat into the GUI from the MATLAB Workspace browser.

You must have already opened the System Identification Tool window, as
described in “Opening the System Identification Tool GUI” on page 3-5.

Note The input and output signals need not have the same number of data
samples.

3-6

Preparing Data

1 In the System Identification Tool window, select Import data > Time
domain data. This action opens the Import Data dialog box.

2 Specify the following options:

• Input — Enter u2 as the name of the MATLAB variable that is the
input signal.

• Output — Enter y2 as the name of the MATLAB variable that is the
output signal.

• Data name — Change the default name to data. This name labels the
data in the System Identification Tool window after the import operation
is completed.

• Starting time — Enter 0 as the starting time. This value designates
the starting value of the time axis on time plots.

• Sampling interval — Enter 0.08 as the time between successive
samples in seconds. This value is the actual sampling interval in the
experiment.

Tip System Identification Toolbox uses the sampling interval during
model estimation and to set the horizontal axis on time plots. If you
transform a time-domain signal to a frequency-domain signal, the
Fourier transforms are computed as discrete Fourier transforms (DFTs)
using this sampling interval.

3-7

3 Tutorial: Estimating Linear Models Using the GUI

The Import Data dialog box now resembles the following figure.

3-8

Preparing Data

3 In the Data Information area, click More to expand the dialog box. Enter
the settings shown in the following figure.

3-9

3 Tutorial: Estimating Linear Models Using the GUI

Input Properties

• InterSample — Enter zoh (zero-order hold) to maintain a
piecewise-constant input signal between samples. This setting specifies
the behavior of the input signals between samples when you transform
the resulting models between discrete-time and continuous-time
representations.

Other possible settings include first-order hold (foh) and
bandwidth-limited behavior (bl), where the latter specifies that
the continuous-time input signal has zero power above the Nyquist
frequency (equal to the inverse of the sampling interval).

Note See the d2c and c2d reference page for more information about
transforming between discrete-time and continuous-time models.

• Period — Inf specifies a nonperiodic input. For a periodic input, type
the period of the input signal in your experiment.

Note If your data is periodic, always include a whole number of periods
for model estimation.

Channel Names

• Input — Enter power.

Tip Naming channels helps you to identify data in plots. For
multivariable input and output signals, you can specify the names of
individual Input and Output channels, separated by commas.

• Output — Enter temperature.

Physical Units of Variables

• Input — Enter W for power units.

3-10

Preparing Data

Tip When you have multiple inputs and outputs, enter a
comma-separated list of Input and Output units corresponding to each
channel.

• Output — Enter ^oC for temperature units.

Notes

• Enter comments about the experiment or the data. For example,
you might enter the experiment name, date, and a description of
experimental conditions. When you estimate models from this data,
these models inherit your data notes.

4 Click Import to add the icon named data to the System Identification
Tool window.

5 Click Close to close the Import Data dialog box.

Plotting and Preprocessing Data
In this portion of the tutorial, you examine the data and prepare it for system
identification. You learn how to:

• Plot the data.

3-11

3 Tutorial: Estimating Linear Models Using the GUI

• Subtract the mean values of the input and the output to remove offsets.

• Split the data into two parts. You use one part of the data for model
estimation, and the other part of the data for model validation.

The reason you subtract the mean values from each signal is because,
typically, you build linear models that describe the responses for deviations
from a physical equilibrium. With steady-state data, it is reasonable
to assume that the starting levels of the signals correspond to such an
equilibrium. Thus, you can seek models around zero without modeling the
absolute equilibrium levels in physical units.

You must have already imported data into the System Identification Tool, as
described in “Importing Data Arrays into the System Identification Tool”
on page 3-6.

Tip For information about other types of preprocessing, such as resampling
and filtering the data, see the topics about plotting and preprocessing data
in the System Identification Toolbox User’s Guide.

3-12

Preparing Data

1 In the System Identification Tool window, select the Time plot check box
to open the Time Plot.

The top axes show the output data (temperature), and the bottom axes
show the input data (power). Both the input and the output data have
nonzero mean values.

3-13

3 Tutorial: Estimating Linear Models Using the GUI

2 In the System Identification Tool window, select <--Preprocess > Remove
means to subtract the mean input value from the input data and the mean
output value from the output data.

3-14

Preparing Data

This action adds a new data set to the System Identification Tool window
with the default name datad (the suffix d means detrend), and updates the
Time Plot window to display both the original and the detrended data.

The detrended data has a zero mean value.

3 In the System Identification Tool window, drag the datad data set to the
Working Data rectangle. This action specifies the detrended data to be
used for estimating models.

4 Select <--Preprocess > Select range to open the Select Range window.

In this window, you can split the data into two parts and specify the first
part for model estimation, and the second part for model validation, as
described in the following steps.

3-15

3 Tutorial: Estimating Linear Models Using the GUI

5 In the Select Range window, change the Samples field to select the first
500 samples, as follows:

1 500

Tip You can also select data samples using the mouse by clicking and
dragging a rectangular region on the plot. If you select samples on the
input-channel axes, the corresponding region is also selected on the
output-channel axes.

3-16

Preparing Data

6 In the Data name field, type the name estimate, and click Insert. This
action adds a new data set to the System Identification Tool window to be
used for model estimation.

7 In the Select Range window, change the Samples field to select the last
500 samples, as follows:

501 1000

3-17

3 Tutorial: Estimating Linear Models Using the GUI

8 In the Data name field, type the name validate, and click Insert. This
action adds a new data set to the System Identification Tool window to be
used for model validation.

9 Drag and drop estimate to the Working Data rectangle, and drag and
drop validate to the Validation Data rectangle so that the System
Identification Tool window resembles the following figure.

Tip If you have multiple data sets available from different experiments,
you can use one data set for estimation and another data set for validation.
Thus, you need not split the data set you originally imported.

3-18

Preparing Data

10 To get information about a data set, right-click its icon. For example,
right-click the estimate data set to open the Data/model Info dialog box.

3-19

3 Tutorial: Estimating Linear Models Using the GUI

In the Data/model Info dialog box, you can perform the following actions:

• Change the name of the data set in the Data name field.

• Change the color of the data icon by changing the RGB values (relative
amounts of red, green, and blue). Each value is between 0 and 1. For
example, [1,0,0] indicates that only red is present, and no green and
blue are mixed into the overall color.

• In the noneditable area, view the total number of samples, the sampling
interval, and the output and input channel names and units.

• In the editable Diary And Notes area, view or edit the actions you
performed on this data set. The actions are translated into commands
equivalent to your GUI operations. For example, the estimate data
set is a result of importing the data, detrending the mean values, and
selecting the first 500 samples of the data:

load dryer2
% Import data
datad = detrend(data,0)
estimate = datad([1:500])

For more information on these and other toolbox commands, see the
reference page for each command.

Tip As an alternative preprocessing shortcut, you can select
Preprocess > Quick start from the System Identification Tool window to
simultaneously perform all of the data preprocessing steps in this tutorial.

For information about other types of preprocessing, such as resampling and
filtering data, see the System Identification Toolbox User’s Guide.

3-20

Saving the GUI Session

Saving the GUI Session
After you preprocess the data, as described in “Plotting and Preprocessing
Data” on page 3-11, you may delete any data sets in the window that you do
not need for estimation and validation, and save your session. You can open
this session later and use it as a starting point for model estimation and
validation without repeating these preparatory steps.

In the following procedure, you delete the original data set data and
the detrended data set datad, rearrange the data icons in the System
Identification Tool window, and save the session.

1 In the System Identification Tool window, drag and drop the data data set
into the Trash.

2 Drag and drop the datad data set into the Trash.

Note Moving items to the Trash does not delete them. To permanently
delete items, select Options > Empty trash in the System Identification
Tool window.

The following figure shows the System Identification Tool window after
moving the items to the Trash.

3-21

3 Tutorial: Estimating Linear Models Using the GUI

3 Drag and drop the estimate and validate data sets to fill the empty
rectangles, as shown in the following figure.

4 Select File > Save session as to open the Save Session dialog box, and
browse to the directory where you want to save the session file.

5 In the File name field, type the name of the session prep_data, and click
Save. The resulting file has a .sid extension.

Tip To open a saved session when starting the System Identification Tool,
type the session name as an argument. For example:

ident('prep_data')

For more information about managing sessions, see the topics on working
with the System Identification Tool GUI in the System Identification Toolbox
User’s Guide.

3-22

Estimating Preliminary Models

Estimating Preliminary Models

In this section...

“Why Estimate Preliminary Models?” on page 3-23

“Using Quick Start to Estimate Preliminary Models” on page 3-24

“Validating Preliminary Models” on page 3-24

“Types of Models Generated by Quick Start” on page 3-28

Why Estimate Preliminary Models?
After preparing the data for estimation, as described in “Plotting and
Preprocessing Data” on page 3-11, you can use the Quick Start feature of
System Identification Toolbox to estimate and compare several types of
models. You can use these models to assess whether linear modeling is
sufficient. Preliminary models also help you gain insight into the possible
delays and orders of the model that you can later refine.

3-23

3 Tutorial: Estimating Linear Models Using the GUI

Using Quick Start to Estimate Preliminary Models
To generate preliminary models, select Estimate > Quick start in the
System Identification Tool window.

This action generates plots of impulse response, frequency-response, and the
output of state-space and polynomial models. For more information about
these plots, see “Validating Preliminary Models” on page 3-24. Close the
model plots after you examine them.

For a description of the generated models, see “Types of Models Generated by
Quick Start” on page 3-28.

Validating Preliminary Models
Estimating models using Quick Start generates the following three plots
of the preliminary models you created in “Using Quick Start to Estimate
Preliminary Models” on page 3-24:

• Step-response plot

• Frequency-response plot

3-24

Estimating Preliminary Models

• Model-output plot

You can analyze these plots to determine the quality of the model. Close the
model plots after you examine them.

Step-Response Plot
The following step-response plot shows agreement for the different models.

Tip If you closed the plot window, select the Transient resp check box
to reopen this window.

Step Response for imp, arxqs, and n4s3

Note The step-response plot does not include the frequency-response model,
spad, estimated using spectral analysis.

3-25

3 Tutorial: Estimating Linear Models Using the GUI

Tip You can use the step-response plot to estimate the dead time of linear
systems. For example, the previous step-response plot shows a time delay of
about 0.25 s before the system responds to the input. This response delay,
or dead time, is approximately equal to about three samples because the
sampling interval is 0.08 s for this data set.

Frequency-Response Plot
The following frequency-response plot shows agreement for the different
models.

Tip If you closed this plot window, select the Frequency resp check box
to reopen this window.

Frequency Response for Models spad, arxqs, and n4s3

3-26

Estimating Preliminary Models

Note The frequency-response plot does not include the impulse-response
model, imp, which is estimated using correlation analysis.

Model-Output Plot
The Model Output window displays this model output together with the
measured output in the validation data.

Tip If you closed the Model Output window, select the Model output check
box to reopen this window.

Measured Output and Model Output for Models arxqs and n4s3

3-27

3 Tutorial: Estimating Linear Models Using the GUI

The model-output plot shows the model response to the input in the validation
data. The fit values for each model are summarized in the Best Fits area
of the Model Output window. The models in the Best Fits list are ordered
from best at the top to worst at the bottom. The fit between the two curves
is computed such that 100 means a perfect fit, and 0 means that the model
output has the same fit to the measured output as the mean of the measured
output.

In this example, the output of the models matches the validation data output,
which indicates that the models seem to capture the main system dynamics
and that linear modeling is sufficient.

Tip To compare predicted model output instead of simulated output, select
this option from the Options menu in the Model Output window.

Types of Models Generated by Quick Start
Quick Start estimates the following four types of models and adds the
following to the System Identification Tool window with default names:

• imp — Step response by correlation analysis using impulse.

This model is nonparametric (not expressed in terms of parameters).

• spad — Spectral analysis estimate of the frequency function using spa.
The frequency function is the Fourier transform of the impulse response of
a linear system.

This model is nonparametric and computes the response for each frequency
value. By default, the model is evaluated at 128 frequency values, ranging
from 0 to the Nyquist frequency.

3-28

Estimating Preliminary Models

• arxqs — Fourth-order autregressive (ARX) model calculated using arx.

This model is parametric and has the following structure:

y t a y t a y t n

u t n b u t n
na a

k nb k

() () ()
() (

+ − + + − =
− + + − −

1 1 …
… b1 nn e tb + +1) ()

y(t) represents the output at time t, u(t) represents the input at time t, na is
the number of poles, nb is the number of b parameters (equal to the number
of zeros plus 1), nk is the number of samples before the input affects output
of the system (called dead time), and e(t) is the white-noise disturbance.

System Identification Toolbox estimates the parameters a an1 … and

b bn1 … using the input and output data from the estimation data set.

In arxqs, na=nb=4, and nk is estimated from the step response model imp.

• n4s3 — State-space model calculated using n4sid. The algorithm
automatically selects the model order (in this case, 3).

This model is parametric and has the following structure:

x t Ax t Bu t Ke t
y t Cx t Du t e t
() () () ()
() () () ()

+ = + +
= + +
1

y(t) represents the output at time t, u(t) represents the input at time
t, x is the state vector, and e(t) is the white-noise disturbance. System
Identification Toolbox estimates the state-space matrices A, B, C, D, and K.

3-29

3 Tutorial: Estimating Linear Models Using the GUI

Estimating Accurate Models

In this section...

“Strategy for Getting Accurate Models” on page 3-30

“Estimating a Range of Model Orders” on page 3-30

“Estimating State-Space and ARMAX Models” on page 3-35

“Choosing the Best Model” on page 3-39

Strategy for Getting Accurate Models
Because the simple models in “Estimating Preliminary Models” on page
3-23 showed that a linear model sufficiently represents the dynamics of the
Feedback Process Trainer, it is worthwhile to improve the model accuracy.

In this portion of the tutorial, you get accurate parametric models by
performing the following activities:

1 Identifying initial model orders and delays from your data using a simple,
autoregressive model structure (ARX).

2 Exploring more complex model structures with orders and delays close to
the initial values you found .

The resulting models are discrete-time models.

Tip You can convert a discrete-time model to a continuous-time model using
the d2c command. For more information, see the corresponding reference
page.

Estimating a Range of Model Orders
What are the reasonable model orders for your system? You can estimate
simple autoregressive (ARX) models to get a range of orders and delays and
compare the performance of these models. Use the orders and delays that
results in the best model fit as an initial guess for more accurate modeling.

3-30

Estimating Accurate Models

About ARX Models
For a single-input/single-output system (SISO), the ARX model structure is:

y t a y t a y t n

u t n b u t n
na a

k nb k

() () ()
() (

+ − + + − =
− + + − −

1 1 …
… b1 nn e tb + +1) ()

y(t) represents the output at time t, u(t) represents the input at time t, na is
the number of poles, nb is the number of zeros plus 1, nk is the number of
samples before the input affects the system output, and e(t) is the white-noise
disturbance.

You must specify the model orders to estimate ARX models.

System Identification Toolbox estimates the parameters a an1 … and b bn1 …
using the data and the model orders you specify.

How to Estimate Model Orders

1 In the System Identification Tool window, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

The ARX model is already selected by default in the Structure list.

3-31

3 Tutorial: Estimating Linear Models Using the GUI

2 Edit the Orders field to specify that System Identification Toolbox try all
combinations of poles, zeros, delays, where each value is between 1 and 10:

[1:10 1:10 1:10]

3-32

Estimating Accurate Models

3 Click Estimate to open the ARX Model Structure Selection window, which
displays the model performance for each combination of model parameters.

You use this plot to select the best-fit model. The horizontal axis is the
total number of parameters:

Number of parameters = +n na b

The vertical axis, called Unexplained output variance (in %), is
the portion of the output not explained by the model—the ARX model
prediction error for a specific number of parameters. The prediction error
is the sum of the squares of the differences between the validation data
output and the model output.

3-33

3 Tutorial: Estimating Linear Models Using the GUI

Three rectangles are highlighted on the plot in green, blue, and red. Each
color indicates a type of best-fit criterion, as follows:

• Red — Best fit minimizes the sum of the squares of the difference
between the validation data output and the model output. This rectangle
indicates the overall best fit.

• Green — Best fit minimizes Rissanen MDL criterion.

• Blue — Best fit minimizes Akaike AIC criterion.

In this tutorial, the Unexplained output variance (in %) value remains
approximately constant for the combined number of parameters from 4 to
20. Such constancy indicates that model performance does not improve at
higher orders. Thus, low-order models might fit the data equally well.

Note When you use the same data set for estimation and validation, use
the MDL and AIC criteria to select model orders. These criteria compensate
for overfitting that results from using too many parameters.

4 In the ARX Model Structure Selection window, select the red bar
(corresponding to 15 on the horizontal axis), and click Insert. This
selection inserts na=6, nb=9, and nk=2 into the Linear Parametric Models
dialog box and performs the estimation.

System Identification Toolbox adds the model arx692 to the System
Identification Tool window and updates the plots to include the response
of the model.

Note The default name of the parametric model contains the model type
and the number of poles, zeros, and delays. For example, arx692 is an ARX
model with na=6, nb=9, and a delay of two samples.

5 In the ARX Model Structure Selection window, select the bar corresponding
to 4 on the horizontal axis (the lowest order that still gives a good fit),
and click Insert.

3-34

Estimating Accurate Models

• This selection inserts na=2, nb=2, and nk=3 (a delay of three samples) into
the Linear Parametric Models dialog box and performs the estimation.

• The model arx223 is added to the System Identification Tool window and
the plots are updated to include its response and output.

6 Click Close to close the ARX Model Structure Selection window.

Estimating State-Space and ARMAX Models
By estimating ARX models with different combinations of orders, as described
in “Estimating a Range of Model Orders” on page 3-30, you identified the
number of poles, zeros, and delays that provide a good starting point for
systematically exploring different models.

The overall best fit for this system corresponds to a model with six poles, nine
zeros, and a delay of two samples. It also showed that a low-order model with
na=2 (two poles), nb=2 (one zero), and nk=3 also provides a good fit.

About State-Space Models
The general state-space model structure is:

x t Ax t Bu t Ke t
y t Cx t Du t e t
() () () ()
() () () ()

+ = + +
= + +
1

y(t) represents the output at time t, u(t) represents the input at time t, x(t) is
the state values at time t, and e(t) is the white-noise disturbance.

You must specify a single integer as the model order to estimate a state-space
model. By default, the delay equals 1.

System Identification Toolbox estimates the state-space matrices A, B, C, D,
and K using the model order and the data you specify.

The state-space model structure is a good choice for quick estimation because
it contains only two parameters: n is the number of poles (the size of the A
matrix) and nk is the delay.

3-35

3 Tutorial: Estimating Linear Models Using the GUI

About ARMAX Models
For a single-input/single-output system (SISO), the ARMAX model structure
is:

y t a y t a y t n

u t n b u t n
na a

k nb k

() () ()
() (

+ − + + − =
− + + − −

1 1 …
… b1 nn

e t c e t c e t n
b

nc c

+ +
+ − + + −

1
11

)
() () () …

y(t) represents the output at time t, u(t) represents the input at time t, na is
the number of poles for the dynamic model, nb is the number of zeros plus 1,
nc is the number of poles for the disturbance model, nk is the dead time (in
terms of the number of samples) before the input affects output of the system,
and e(t) is the white-noise disturbance.

Note The ARMAX model is more flexible than the ARX model because
the ARMAX structure contains an extra polynomial to model the additive
disturbance.

You must specify the model orders to estimate ARMAX models.

System Identification Toolbox estimates the parameters a an1 … , b bn1 … , and

c cn1 … using the data and the model orders you specify.

How to Estimate State-Space and ARMAX Models
To explore the state-space and ARMAX model structures:

1 In the System Identification Tool window, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

2 From the Structure list, select State Space: n [nk].

3 In the Orders field, type 6 to create a sixth-order state-space model.

This choice is based on the fact that the best-fit ARX model has six poles.

3-36

Estimating Accurate Models

4 Click Estimate to add a state-space model called n4s6 to the System
Identification Tool window.

5 From the Structure list, select ARMAX: [na nb nc nk] to estimate an
ARMAX model.

6 In the Orders field, set the orders na, nb, nc, and nk to the following values:

2 2 2 2

The model name in the Name field is amx2222, by default.

7 Click Estimate to add the ARMAX model to the System Identification
Tool window.

Tip If you closed the Model Output window, you can regenerate it by
selecting the Model output check box in the System Identification Tool
window. If the new model does not appear on the plot, click the model icon
in the System Identification Tool window to make the model active.

3-37

3 Tutorial: Estimating Linear Models Using the GUI

The fit for amx2222 is about 1% lower than the other models.

Note The Best Fits area in the Model Output window sorts models such
that models with the best-fit model appear at the top.

3-38

Estimating Accurate Models

8 Repeat steps 6 and 7 using higher Orders 3 3 2 2. These orders result in
a model that fits the data almost as well as the higher order ARX model
arx692.

Learn More
To learn more about estimating state-space models, see the corresponding
section in the System Identification Toolbox User’s Guide.

To learn more about estimating polynomial models, such as ARMAX, see the
corresponding section in the System Identification Toolbox User’s Guide.

Choosing the Best Model

• “Summary of Models” on page 3-40

• “Examining the Model Output” on page 3-40

• “Examining Model Residuals” on page 3-43

3-39

3 Tutorial: Estimating Linear Models Using the GUI

Summary of Models
The following figure shows the System Identification Tool window, which
includes all of the models you estimated so far.

Examining the Model Output
A good model is the simplest model that best explains the dynamics and
successfully simulates or predicts the output for different inputs.

The Model Output window should be already open. It is automatically
updated with the new models. Examine the model-output plot to see how well
the model output matches the measured output in the validation data set.

Tip If you closed the Model Output plot, you can regenerate it by selecting
the Model output check box in the System Identification Tool window. If the
new model does not appear on the plot, click the model icon in the System
Identification Tool window to include this model on plots.

3-40

Estimating Accurate Models

Models are listed by name in the Best Fits area of the Model Output plot.
The highest-order model you created, arx692, fits the data as well as the
simpler model amx3322.

Tip To validate your models using a different data set, you can drag and drop
this data set into the Validation Data rectangle in the System Identification
Tool window. This action automatically updates any open model views. If you
transform validation data into the frequency domain, the model-output plot
updates to show the model comparison in the frequency domain.

3-41

3 Tutorial: Estimating Linear Models Using the GUI

To get a closer look at how well these models fit the data, magnify a portion of
the plot by clicking and dragging a rectangle around the region of interest, as
shown in the following figure.

3-42

Estimating Accurate Models

Releasing the mouse magnifies this region and shows that all models seem to
agree with the validation data.

Examining Model Residuals
In addition to comparing model output to measured output, you can validate
a model by checking the behavior of its residuals.

To generate a residual analysis plot, select the Model resids check box in the
System Identification Tool window.

3-43

3 Tutorial: Estimating Linear Models Using the GUI

The top axes show the autocorrelation of residuals for the temperature output
(whiteness test). The horizontal scale is the number of lags, or the difference
between the time steps that are correlated. The horizontal dashed lines on
the plot represent the model confidence interval. Any fluctuations within the
confidence interval are considered to be insignificant. Two of the models, n4s3
and arx223, produce residuals that enter outside the confidence interval.
A good model should have a residual autocorrelation function within the
confidence interval, indicating that the residuals are uncorrelated.

The bottom axes show the cross-correlation of the residuals with the
input. A good model should have residuals uncorrelated with past inputs
(independence test). Evidence of correlation indicates that the model does
not describe how a portion of the output relates to the corresponding input.
For example, when there is a peak outside the confidence interval for lag k,
this means that the contribution to the output y(t) that originates from the
input u(t-k) is not properly described by the model. The models arxqs and
amx2222 extend beyond the confidence interval and do not perform as well
as the other models.

3-44

Estimating Accurate Models

Click the model icons n4s3, arx223, arxqs, and amx2222 in the System
Identification Tool window to remove them from the Residual Analysis plot.
The Residual Analysis plot now includes only the three models that pass the
residual tests: arx692, n4s6, and amx3322.

The plots for these models fall within the confidence intervals. Therefore, it is
reasonable to pick the simpler, low-order model amx3322 as the final choice.
The amx3322 output agrees well with the measured output.

3-45

3 Tutorial: Estimating Linear Models Using the GUI

Viewing Model Parameters

In this section...

“Viewing Model Parameter Values” on page 3-46

“Viewing Parameter Uncertainties” on page 3-48

Viewing Model Parameter Values
You can view the numerical parameter values of the model amx3322 by
right-clicking the model icon in the System Identification Tool window. The
Data/model Info dialog box opens.

3-46

Viewing Model Parameters

The noneditable area of the Data/model Info dialog box lists the following
parameter values:

A(q) = 1 - 1.46q^-1 + 0.6604q^-2 - 0.09799q^-3
B(q) = 0.00317q^-2 + 0.0622q^-3 + 0.03176q^-4
C(q) = 1 - 0.4806q^-1 + 0.1861q^-2

These parameter values correspond to the following difference equation for
your system:

y t y t y t y t
u

() . () . () . ()
.

− − + − − − =1 46 1 0 6604 2 0 09799 3
0 00317 (() . () . ()
() . ()

t u t u t
e t e t

− + − + − +
− − +

2 0 622 3 0 03176 4
0 4806 1 00 1861 2. ()e t −

Note The coefficient of u(t-2) is not significantly different from zero. This
lack of difference explains why delay values of both 2 and 3 give good results.

Parameter values appear in the following format:

A q a q a q

B q b q b q

C q c q c

na
na

nb
nb

()

()

()

= + + +

= + +

= + + +

− −

− −

−

1

1

1
1

1
1

1
1

…

…

… nnc
ncq−

3-47

3 Tutorial: Estimating Linear Models Using the GUI

The parameters appear in the ARMAX model structure, as follows:

A q y t B q u t C q e t() () () () () ()= +

which corresponds to this general difference equation:

y t a y t a y t n

u t n b u t n
na a

k nb k

() () ()
() (

+ − + + − =
− + + − −

1 1 …
… b1 nn

e t c e t c e t n
b

nc c

+ +
+ − + + −

1
11

)
() () () …

y(t) represents the output at time t, u(t) represents the input at time t, na is
the number of poles for the dynamic model, nb is the number of zeros plus 1,
nc is the number of poles for the disturbance model, nk is the dead time (in
terms of the number of samples) before the input affects output of the system,
and e(t) is the white-noise disturbance.

Viewing Parameter Uncertainties
To view parameter uncertainties, click Present in the Data/model Info dialog
box, and view the model information in the MATLAB Command Window.

A(q) = 1 - 1.46(+-0.06003)q^-1
+ 0.6604(+-0.08906)q^-2
- 0.09799(+-0.03519)q^-3

B(q) = 0.00317(+-0.001646)q^-2
+ 0.0622(+-0.002425)q^-3
+ 0.03176(+-0.005629)q^-4

C(q) = 1 - 0.4806(+-0.07558)q^-1
+ 0.1861(+-0.05597)q^-2

The 1-standard-deviation uncertainty for each set of model parameters is in
parentheses next to each parameter value.

3-48

Exporting the Model to the MATLAB Workspace Browser

Exporting the Model to the MATLAB Workspace Browser
The models you create in the System Identification Tool GUI are not
automatically available in the MATLAB Workspace browser. To make a model
available to other toolboxes, Simulink, and System Identification Toolbox
commands, you must export your model from the System Identification Tool
to the MATLAB Workspace browser. For example, if the model is a plant that
requires a controller, you can import the model from the MATLAB Workspace
browser into Control System Toolbox.

To export the amx3322 model, drag it to the To Workspace rectangle in the
System Identification Tool window. The model appears in the MATLAB
Workspace browser.

Note This model is an object that belongs to the idpoly class. To learn more
about this model object, see the corresponding reference page.

After the model is in the MATLAB Workspace browser, you can perform other
operations on the model. For example, if you have Control System Toolbox
installed, you might transform the model to a state-space LTI object using:

ss_model=ss(amx3322)

3-49

3 Tutorial: Estimating Linear Models Using the GUI

You can extract the dynamic model and ignore the noise model using the
following command:

ss_model=ss_model('m')

3-50

Exporting the Model to the LTI Viewer

Exporting the Model to the LTI Viewer
If you have Control System Toolbox installed on your computer, the To LTI
Viewer rectangle appears in the System Identification Tool window.

The LTI Viewer is a graphical user interface for viewing and manipulating
the response plots of linear models. It displays the following plots:

• Step- and impulse-response

• Bode, Nyquist, and Nichols

• Frequency-response singular values

• Pole/zero

• Response to general input signals

• Unforced response starting from given initial states (only for state-space
models)

To plot a model in the LTI Viewer, drag and drop the model icon to the To LTI
Viewer rectangle in the System Identification Tool window.

For more information about working with plots in the LTI Viewer, see the
Control System Toolbox documentation.

3-51

3 Tutorial: Estimating Linear Models Using the GUI

3-52

4

Tutorial: Estimating
Process Models Using the
GUI

About This Tutorial (p. 4-3) Overview of the tutorial for
estimating continuous-time
process models from
single-input/single-output (SISO)
data.

What Is a Continuous-Time Process
Model? (p. 4-5)

Description of the linear,
continuous-time process model.

Preparing Data (p. 4-6) How to load the sample MAT-file into
the MATLAB Workspace browser,
open the System Identification Tool
GUI, import a data object into the
System Identification Tool from the
MATLAB Workspace browser, and
plot and preprocess the data.

Estimating Second-Order Process
Models with Complex Poles (p. 4-14)

How to estimate a second-order
process model with complex poles
(underdamped modes).

Refining the Process Model (p. 4-23) How to improve the model by
modifying the estimation algorithm.

4 Tutorial: Estimating Process Models Using the GUI

Viewing Process Model Parameters
(p. 4-27)

How to view estimated model
parameters and the history of
operations on the model and the
corresponding data.

Exporting the Model to the MATLAB
Workspace Browser (p. 4-30)

How to make the model available
to operations in the MATLAB
Command Window for further
processing with this toolbox or other
MathWorks products.

Using Simulink with System
Identification Toolbox (p. 4-31)

How to create and simulate a System
Identification Toolbox model in
Simulink.

4-2

About This Tutorial

About This Tutorial

In this section...

“Objectives” on page 4-3

“Sample Data” on page 4-3

Objectives
Estimate and validate simple, continuous-time models from
single-input/single-output (SISO) data to find the one that best represents
your system dynamics.

After completing this tutorial, you will be able to accomplish the following
tasks using the System Identification Tool GUI:

• Import data objects from the MATLAB Workspace browser into the GUI.

• Plot and preprocess the data.

• Estimate and validate low-order, continuous-time models from the data.

• Export models to the MATLAB Workspace browser.

• Export the model to the LTI Viewer for linear analysis (requires Control
System Toolbox).

Sample Data
The sample data you use in this tutorial is in proc_data.mat, which contains
200 samples of simulated single-input/single-output SISO) time-domain
data. The input is a random binary signal that oscillates between -1 and +1.
White noise is added to the input with a standard deviation of 0.2, which
results in a signal-to-noise ratio of about 20 dB. This data is simulated using a
second-order system with underdamped modes (complex poles) and a peak
response at 1 rad/s:

G s
s s

e s()
.

=
+ +

−1

1 0 2 2
2

The sampling interval of the simulation is 1 second.

4-3

4 Tutorial: Estimating Process Models Using the GUI

Note This tutorial uses time-domain data to demonstrate how you
can estimate linear models. However, the same workflow applies to
frequency-domain data.

4-4

What Is a Continuous-Time Process Model?

What Is a Continuous-Time Process Model?
Continuous-time process models are simple transfer functions that describe
the system dynamics using static gain, time delay before the system output
responds to the input, and characteristic time constants associated with poles
and zeros. Such models are popular the process industry and are often used
for tuning PID controllers, for example. The parameters of process models
have physical significance.

You use the System Identification Tool to specify different process-model
structures by varying the number of poles, adding an integrator, or adding
or removing a time delay or a zero. The highest model order you can specify
in this toolbox is three, and the poles can be real or complex (underdamped
modes).

In general, a linear system is characterized by a transfer function G, which is
an operator that takes the input u to the output y:

y Gu=

For a continuous-time system, G relates the Laplace transforms of the input
U(s) and the output Y(s):

Y s G s U s() () ()=

In this tutorial, you estimate G using different process-model structures.

For example, the following model structure is a first-order, continuous-time
process model, where K is the static gain, Tp1 is a time constant, and Td is the
input-to-output delay:

G s
K
sT

e
p

sTd() =
+

−
1 1

4-5

4 Tutorial: Estimating Process Models Using the GUI

Preparing Data

In this section...

“Loading Data into the MATLAB Workspace Browser” on page 4-6

“Opening the System Identification Tool GUI” on page 4-6

“Importing Data Objects into the System Identification Tool” on page 4-7

“Plotting and Preprocessing Data” on page 4-10

Loading Data into the MATLAB Workspace Browser
Load sample data in proc_data.mat by typing the following command at
the MATLAB prompt:

load proc_data

This command loads the data into the MATLAB Workspace browser as
the data object z. For more information about iddata objects, see the
corresponding reference pages.

Opening the System Identification Tool GUI
To open the System Identification Tool GUI, type the following command at
the MATLAB prompt:

ident

4-6

Preparing Data

The default session name, Untitled, appears in the title bar.

Importing Data Objects into the System Identification
Tool
You can import the data objects into the GUI from the MATLAB Workspace
browser.

You must have already opened the GUI, as described in “Opening the System
Identification Tool GUI” on page 4-6.

1 In the System Identification Tool window, select Import data > Data
object. This action opens the Import Data dialog box.

4-7

4 Tutorial: Estimating Process Models Using the GUI

2 Specify the following options:

• Object — Enter z as the name of the MATLAB variable that is the
time-domain data object. Press Enter.

• Data name — Use the default name z, which is the same as the name
of the data object you are importing. This name labels the data in
the System Identification Tool window after the import operation is
completed.

• Starting time — Enter 0 as the starting time. This value designates
the starting value of the time axis on time plots.

• Sampling interval — Enter 1 as the time between successive samples
in seconds. This value is the simulation sampling interval used to
simulate the data.

System Identification Toolbox uses the sampling interval during model
estimation and to set the horizontal axis on time plots. If you transform a
time-domain signal to a frequency-domain signal, this sampling interval
is used to set the correct frequency scales for the Fourier transforms. For
more information about performing Fourier transforms in this toolbox,
see the fft reference page.

The Import Data dialog box now resembles the following figure.

4-8

Preparing Data

4-9

4 Tutorial: Estimating Process Models Using the GUI

3 Click Import to add the icon named z to the System Identification Tool
window.

4 Click Close to close the Import Data dialog box.

Plotting and Preprocessing Data
In this portion of the tutorial, you examine the data and prepare it for system
identification. You learn how to:

• Plot the data.

• Subtract the mean values of the input and the output to remove offsets.

• Split the data into two parts. You use one part of the data for model
estimation, and the other part of the data for model validation.

The reason you subtract the mean values from each signal is because,
typically, you build linear models that describe the responses for deviations
from a physical equilibrium. With steady-state data, it is reasonable
to assume that the starting levels of the signals correspond to such an
equilibrium. Thus, you can seek models around zero without modeling the
absolute equilibrium levels in physical units.

You must have already imported data into the System Identification Tool, as
described in “Importing Data Objects into the System Identification Tool”
on page 4-7.

4-10

Preparing Data

Tip For information about other types of preprocessing, such as resampling
and filtering the data, see the topics on plotting and preprocessing data in the
System Identification Toolbox User’s Guide.

1 In the System Identification Tool window, select the Time plot check box
to open the Time Plot window.

The bottom axes show the simulated input data—a random binary
sequence, and the top axes show the simulated output data.

The next two steps demonstrate how to modify the axis limits in the plot.

2 To modify the vertical-axis limits for the input data, select Options > Set
axes limits.

4-11

4 Tutorial: Estimating Process Models Using the GUI

3 In the Limits for Time Plot dialog box, set the new vertical axis limit of the
input data channel u1 to [-1.5 1.5]. Click Apply and Close.

Note The other two fields, Time and y1, let you set the axis limits for the
time axis and the output channel axis, respectively. In the Limits for Time
Plot dialog box, you can also modify each axis to be logarithmic or linear.

4-12

Preparing Data

The following figure shows the time plot.

4 In the System Identification Tool window, select <--Preprocess > Quick
start to simultaneously perform the following four actions:

• Subtract the mean value from each channel.

• Split the data into two parts.

• Specify the first part of the data as estimation data (or Working Data).

• Specify the second part of the data as Validation Data.

4-13

4 Tutorial: Estimating Process Models Using the GUI

Estimating Second-Order Process Models with Complex
Poles

In this section...

“Estimating an Initial Model” on page 4-14

“Tips for Specifying Known Parameters” on page 4-19

“Validating the Initial Model” on page 4-19

Estimating an Initial Model
In this portion of the tutorial, you estimate process models with this structure:

G s
K

T s T s
e

w w

T sd() =
+ +()

−

1 2 2 2ξ

This model provides a good starting point for guiding the next step in the
identification process.

You must have already prepared the data for estimation, as described in
“Plotting and Preprocessing Data” on page 4-10.

4-14

Estimating Second-Order Process Models with Complex Poles

1 In the System Identification Tool window, select Estimate > Process
models to open the Process Models dialog box.

4-15

4 Tutorial: Estimating Process Models Using the GUI

2 In the Model Transfer Function area, specify the following options:

• Under Poles, select 2 and Underdamped.

This selection updates the Model Transfer Function to a second-order
model structure that can contain complex poles.

The Parameter area now shows four active parameters: K, Tw, Zeta,
and Td. By default, the model Name is set to the acronym P2DU, which
indicates two poles (P2), the presence of a delay (D), and underdamped
modes (U).

Note You can edit the model name. Choose a model name that is unique
in the System Identification Tool window.

• Make sure that the Zero and Integrator check boxes are cleared to
exclude a zero and an integrator (self-regulating process) from the model.

4-16

Estimating Second-Order Process Models with Complex Poles

3 In the Initial Guess area, select Auto-selected to calculate the initial
parameter values during the estimation. The Initial Guess column in
the Parameter table displays Auto.

4 Keep the default Bounds values, which specify the minimum and
maximum values of each parameter.

When you know the range of possible values for a parameter, type these
values into the corresponding Bounds field to help the estimation
algorithm.

5 Keep the defaults for the estimation algorithm settings:

• Disturbance Model — None means that the algorithm does not
estimate the noise model. This option also sets the Focus to Simulation.

• Focus — Simulation means that the estimation algorithm does not use
the noise model to weigh the relative importance of how closely to fit
the data in various frequency ranges. Instead, the algorithm uses the
input spectrum in a particular frequency range to weigh the relative
importance of the fit in that frequency range.

4-17

4 Tutorial: Estimating Process Models Using the GUI

Tip The Simulation setting is optimized for data that has a high
signal-to-noise ratio and for when you plan to use your model for
simulation applications. If your system contains significant noise and
you want to either model the noise or improve parameter estimates
using the noise model, then select Prediction.

• Initial state — Auto means that the algorithm analyzes the data
and chooses the optimum method for handling the initial state of the
system. If you get poor results, you might try setting a specific method
for handling initial states, rather than choosing it automatically.

• Covariance — Estimate means that the algorithm computes parameter
uncertainties that display on plots as model confidence regions.

6 Click Estimate. This selection adds the model P2DU to the System
Identification Tool window.

4-18

Estimating Second-Order Process Models with Complex Poles

Tips for Specifying Known Parameters
If you know a parameter value exactly, type this value in the Initial Guess
column.

When you know the value of a parameter approximately, you can help the
estimation algorithms by entering an initial value in the Initial Guess
column. In this case, keep the Known check box cleared to allow the
estimation to fine-tune this initial guess.

For example, to fix the time-delay value Td at 2s, you can type the value into
Value field of the Parameter table in the Process Models dialog box and select
the corresponding Known check box.

Validating the Initial Model
In this portion of the tutorial, you generate the following two plots to examine
the initial model you created in “Estimating an Initial Model” on page 4-14:

• Comparison of the model output and the measured output on a time plot

• Autocorrelation of the output residuals, and cross-correlation of the input
and the output residuals

4-19

4 Tutorial: Estimating Process Models Using the GUI

Examining Model Output
A good model is the simplest model that best explains the dynamics and
successfully simulates or predicts the output for different inputs. Use the
model-output plot to check how well the models output matches the measured
output in the validation data set.

To generate the model-output plot, select the Model output check box in the
System Identification Tool window.

System Identification Toolbox uses input validation data as input to the
model, and plots the simulated output on top of the output validation
data. The preceding plot shows that the model output agrees with the
validation-data output.

The Best Fits area of the Model Output plot shows the agreement (in percent)
between the model output and the validation-data output.

4-20

Estimating Second-Order Process Models with Complex Poles

Recall that the sample data is simulated using the following second-order
system with underdamped modes (complex poles), and has a peak response at
1 rad/s:

G s
s s

e s()
.

=
+ +

−1

1 0 2 2
2

Because the data includes noise at the input during the simulation, the
estimated model cannot exactly reproduce the model used to simulate the
data.

Examining Model Residuals
In addition to comparing model output to measured output, you can validate
a model by checking the behavior of its residuals.

To generate a Residual Analysis plot, select the Model resids check box in
the System Identification Tool window.

4-21

4 Tutorial: Estimating Process Models Using the GUI

The top axes show the autocorrelation of residuals for the output (whiteness
test). The horizontal scale is the number of lags, or the difference between
the time steps that are correlated. Any fluctuations within the confidence
interval are considered to be insignificant. A good model should have a
residual autocorrelation function within the confidence interval, indicating
that the residuals are uncorrelated. However, in this example, the residuals
appear to be correlated.

The bottom axes show the cross-correlation of the residuals with the
input. A good model should have residuals uncorrelated with past inputs
(independence test). Evidence of correlation indicates that the model does not
describe how a portion of the output relates to the corresponding input. For
example, when there is a peak outside the confidence interval for lag k, this
means that the contribution to the output y(t) that originates from the input
u(t-k) is not properly described by the model. In this example, there is no
correlation between the residuals and the inputs.

Thus, residual analysis indicates that this process model is good, but that
there might be a need for a noise model.

4-22

Refining the Process Model

Refining the Process Model

In this section...

“Estimating Models with Modified Settings” on page 4-23

“Comparing Models” on page 4-24

Estimating Models with Modified Settings
In this portion of the tutorial, you modify the estimation algorithm and
include a noise model to improve the model results.

Note The Process Models dialog box should still be open. If you closed it,
repeat the procedure in “Estimating an Initial Model” on page 4-14.

1 In the Process Models dialog box, modify the following settings:

• Focus — Set to Prediction to specify that the estimation algorithm use
the noise model to weigh the relative importance of how closely to fit
the data in various frequency ranges. The presence of (high-frequency)
noise results in the algorithm assigning less importance to fitting the
high-frequency portions of the data.

• Disturbance Model — Set to Order 1 to estimate a noise model H as a
continuous-time, first-order ARMA model:

y Gu He= +

where e is white noise.

• Name — Edit the model name to P2DUe1 to generate a model with a
unique name in the System Identification Tool window.

2 Click Estimate.

3 In the Process Models dialog box, set the Disturbance Model to Order 2
to estimate a second-order noise model.

4-23

4 Tutorial: Estimating Process Models Using the GUI

4 Edit the Name field to P2DUe2 to generate a model with a unique name in
the System Identification Tool window.

5 Click Estimate.

Comparing Models
The Model Output and the Residual Analysis windows dynamically update
to include the two new models. In this portion of the tutorial, you use these
plots to compare the estimated models.

Note If you closed these plots, you can reopen them by selecting the Model
output and the Model resids check boxes in the System Identification Tool
window.

The following Model Output plot shows that the P2DUe2 model has a better
performance than the other two models. However, all three models agree with
the validation-data output.

4-24

Refining the Process Model

Futhermore, P2DUe2 falls well within the confidence bounds on the Residual
Analysis plot.

To view residuals for P2DUe2 only, remove models P2DU and P2DUe1 from the
Residual Analysis plot by clicking the corresponding icons in the System
Identification Tool window.

4-25

4 Tutorial: Estimating Process Models Using the GUI

The Residual Analysis plot updates, as shown in the following figure.

The whiteness test for P2DUe2 shows that the residuals are uncorrelated, and
the independence test shows no correlation between the residuals and the
inputs. These tests indicate that P2DUe2 is a good model.

4-26

Viewing Process Model Parameters

Viewing Process Model Parameters

In this section...

“Viewing Model Parameter Values” on page 4-27

“Viewing Parameter Uncertainties” on page 4-28

Viewing Model Parameter Values
You can view the numerical parameter values and other information about
the model P2DUe2 by right-clicking the model icon in the System Identification
Tool window. The Data/model Info dialog box opens.

The noneditable area of the dialog box lists the model coefficients that
correspond to the following model structure:

4-27

4 Tutorial: Estimating Process Models Using the GUI

G s
K

T s T s
e

w w

T sd() =
+ +()

−

1 2 2 2ξ

For the model P2DUe2:

• K is 0.96379.

• Tw is 0.98976.

• Zeta is 0.097709.

• Td is 2.0018.

These coefficients are agree with the model used to simulate the data:

G s
s s

e s()
.

=
+ +

−1

1 0 2 2
2

P2DUe2 also includes an additive noise term, where H is a second-order ARMA
model and e is white noise:

y Gu He= +

The Data/model Info dialog box gives the noise model H as a ratio of two
polynomials, C(s)/D(s), where:

C(s) = s^2 + 2.03(+-0.06772)s + 2.621(+-0.3984)
D(s) = s^2 + 0.2123(+-0.07437)s + 1.113(+-0.07804)

The 1-standard-deviation uncertainty for each set of model parameters is in
parentheses next to each parameter value.

Viewing Parameter Uncertainties
To view parameter uncertainties for the system transfer function, click
Present in the Data/model Info dialog box, and view the information in the
MATLAB Command Window.

K = 0.96379+-0.018245
Tw = 0.98976+-0.0055579

4-28

Viewing Process Model Parameters

Zeta = 0.097709+-0.0064056
Td = 2.0018+-0.0025342

The 1-standard-deviation uncertainty for each set of model parameters is in
parentheses next to each parameter value.

4-29

4 Tutorial: Estimating Process Models Using the GUI

Exporting the Model to the MATLAB Workspace Browser
You can perform further analysis on your estimated models from the MATLAB
Workspace browser. For example, if the model is a plant that requires a
controller, you can import the model from the MATLAB Workspace browser
into Control System Toolbox. To simulate your model in Simulink, perhaps
as part of a larger dynamic system, you can import this model as a Simulink
block.

The models you create in the System Identification Tool GUI are not
automatically available in the MATLAB Workspace browser. To make a model
available to other toolboxes, Simulink, and System Identification Toolbox
commands, you must export your model from the System Identification Tool
to the MATLAB Workspace browser.

To export the P2DUe2 model, drag it to the To Workspace rectangle in the
System Identification Tool window. The model now appears in the MATLAB
Workspace browser.

Note This model is an object that belongs to the idproc class. To learn more
about this model object, see the corresponding reference page.

4-30

Using Simulink with System Identification Toolbox

Using Simulink with System Identification Toolbox

In this section...

“Preparing Input Data in the MATLAB Workspace Browser” on page 4-31

“Building the Simulink Model” on page 4-31

“Configuring Blocks and Simulation Parameters” on page 4-33

“Running the Simulation” on page 4-37

Preparing Input Data in the MATLAB Workspace
Browser
You can create a simple Simulink model that uses blocks from the System
Identification Toolbox library to bring the data z and the model P2DUe2 into
Simulink.

You must have completed the previous steps in this tutorial to make these
variables available in the MATLAB Workspace browser.

Note Simulink must be installed to build the Simulink model.

Because you only need the input channel of z for providing input to the model,
type the following in the MATLAB Command Window:

z_input = z % Creates a new iddata object.
z_input.y = [] % Sets the output channel

% to empty.

Building the Simulink Model
The following steps guide you through the process of adding blocks to a
Simulink model. For more information about working with Simulink models,
see the Simulink documentation.

1 In the MATLAB Command Window, type simulink at the MATLAB
prompt.

4-31

4 Tutorial: Estimating Process Models Using the GUI

2 Select File > New > Model to open a new model window.

3 In the Simulink Library Browser window, select the System
Identification Toolbox library. The right side of the window displays
blocks specific to System Identification Toolbox.

Tip An alternative way to access the System Identification block library is
to type slident in the MATLAB Command Window.

4 Drag the following System Identification Toolbox blocks to the new model
window:

• Iddata Source block

• Idmodel block

• Iddata Sink block

5 In the Simulink Library Browser window, select the Simulink > Sinks
library, and drag the Scope block to the new model window.

4-32

Using Simulink with System Identification Toolbox

6 In the Simulink model window, connect the blocks until your model
resembles the following figure.

In the next section, you configure these blocks to get information from the
MATLAB Workspace browser and set the simulation time interval and
duration.

Configuring Blocks and Simulation Parameters
The following procedure guides you through the following tasks to configure
the model blocks:

• Get data from the MATLAB Workspace browser.

• Set the simulation parameters.

1 In the new model window, select Simulation > Configuration
Parameters.

2 In the Configuration Parameters dialog box, type 200 in the Stop time
field. Click OK. This value sets the duration of the simulation to 200
seconds.

4-33

4 Tutorial: Estimating Process Models Using the GUI

3 Double-click the Iddata Source block to open the Source Block Parameters:
Iddata Source dialog box. Next, type the following variable name in the
Iddata object field:

z_input

This variable represents the data object in the MATLAB Workspace
browser that contains the input data.

Tip As a shortcut, you can drag and drop the variable name from the
MATLAB Workspace browser to the Iddata object field.

4 Click OK.

4-34

Using Simulink with System Identification Toolbox

5 Double-click the Idmodel block to open the Function Block Parameters:
Idmodel dialog box. Then, type the following variable name in the idmodel
variable field:

P2DUe2

This variable represents the name of the process model in the MATLAB
Workspace browser.

4-35

4 Tutorial: Estimating Process Models Using the GUI

6 Clear the Add noise check box to exclude noise from the system. Click OK.

When Add noise is selected, Simulink derives the noise amplitude
from the NoiseVariance property of the model and adds noise to the
model accordingly. The simulation propagates this noise according to the
noise model H that you estimated with the system dynamics in System
Identification Toolbox:

y Gu He= +

7 Double-click the Iddata Sink block to open the Sink Block Parameters:
Iddata Sink dialog box. Then, type the following variable name in the
IDDATA Name field:

z_sim_out

8 Type 1 in the Sample Time (sec.) field to set the sampling time of the
output data to be the same as the sampling time of the input data. Click
OK.

4-36

Using Simulink with System Identification Toolbox

The resulting change to the Simulink model is shown in the following figure.

Running the Simulation

1 In the Simulink model window, select Simulation > Start.

2 Double-click the Scope block to display the time plot of the model output.

4-37

4 Tutorial: Estimating Process Models Using the GUI

3 In the MATLAB Workspace browser, notice the variable z_sim_out that
stores the model output as an iddata object. You specified this variable
name when you configured the Iddata Sink block.

This variable stores the simulated output of the model and it is now
available for further processing and exploration.

4-38

5

Tutorial: Estimating Linear
Models Using the Command
Line

About This Tutorial (p. 5-3) Overview of the tutorial for
estimating linear models from
multiple-input/single-output (MISO)
data using the System Identification
Toolbox objects and methods.

Preparing Data (p. 5-5) How to load the sample MAT-file
into the MATLAB Workspace
browser, plot the data, and subtract
equilibrium values from the data.

Estimating Nonparametric Models
(p. 5-17)

How to estimate frequency-response
and transient-response models to
analyze the dynamic characteristics
of the system.

Estimating Delays in the System
(p. 5-22)

How to estimate input/output
delays in the system using an ARX
polynomial model.

Estimating Model Orders Using a
Simple ARX Structure (p. 5-25)

How to estimate model orders using
an ARX polynomial model.

Estimating Continuous-Time
Process Models (p. 5-33)

How to estimate and validate a
linear, continuous-time process
model both with and without noise.

5 Tutorial: Estimating Linear Models Using the Command Line

Estimating Black-Box Polynomial
Models (p. 5-44)

How to estimate and validate
ARX, state-space, and Box-Jenkins
models.

Simulating and Predicting Model
Output (p. 5-56)

How to simulate and predict model
output using sim and predict,
respectively.

5-2

About This Tutorial

About This Tutorial

In this section...

“Objectives” on page 5-3

“Sample Data” on page 5-3

Objectives
Estimate and validate linear models from multiple-input/single-output
(MISO) data to find the one that best represents your system dynamics.

After completing this tutorial, you will be able to accomplish the following
tasks using the command line:

• Create data objects to represent data.

• Plot the data.

• Preprocess data by removing offsets from the input and output signals.

• Estimate and validate linear models from the data.

• Simulate and predict model output.

Sample Data
The sample data is the MAT-file co2data.mat, which contains two
experiments of two-input and single-output (MISO) time-domain data from a
steady-state process that the operator perturbed from equilibrium values.

In the first experiment, the operator introduced a pulse wave to both inputs.
In the second experiment, the operator introduced a pulse wave to the first
input and a step signal to the second input.

5-3

5 Tutorial: Estimating Linear Models Using the Command Line

Note This tutorial uses time-domain data to demonstrate how you can
estimate linear models. This workflow also applies to frequency-domain data.

5-4

Preparing Data

Preparing Data

In this section...

“Loading Data into the MATLAB Workspace Browser” on page 5-5

“Plotting the Input/Output Data” on page 5-6

“Removing Equilibrium Values from the Data” on page 5-7

“Using Objects to Represent Data for System Identification” on page 5-8

“Creating iddata Objects” on page 5-9

“Plotting the Data” on page 5-11

“Selecting a Subset of the Data” on page 5-15

Loading Data into the MATLAB Workspace Browser
Load the sample data in co2data.mat by typing the following command at
the MATLAB prompt:

load co2data;

This command loads the following five variables into the MATLAB Workspace
browser:

• Input_exp1 and Output_exp1 are the input and output data from the first
experiment, respectively.

• Input_exp2 and Output_exp2 are the input and output data from the
second experiment, respectively.

• Time is the time vector from 0 to 1000 minutes, increasing in equal
increments of 0.5 min.

For both experiments, the input data consists of two columns of values. The
first column of values is the rate of chemical consumption (in kilograms per
minute), and the second column of values is the current (in amperes). The
output data is a single column of the rate of carbon-dioxide production (in
milligrams per minute).

5-5

5 Tutorial: Estimating Linear Models Using the Command Line

Plotting the Input/Output Data
You can plot the input and output data from both experiments using the
following commands:

% Plot the input and output data from both experiments
plot(Time,Input_exp1,Time,Output_exp1)
legend('Input 1','Input 2','Output 1')
figure
plot(Time,Input_exp2,Time,Output_exp2)
legend('Input 1','Input 2','Output 1')

The following plot shows the first experiment, where the operator applies a
pulse wave to each input to perturb it from its steady-state equilibrium.

Input and Output Data from Experiment 1

5-6

Preparing Data

The following plot shows the second experiment, where the operator applies a
pulse wave to the first input and a step signal to the second input.

Input and Output Data from Experiment 2

Removing Equilibrium Values from the Data
Plotting the data, as described in “Plotting the Input/Output Data” on page
5-6, shows that the inputs and the outputs have nonzero equilibrium values.
In this portion of the tutorial, you subtract equilibrium values from the data.

The reason you subtract the mean values from each signal is because,
typically, you build linear models that describe the responses for deviations
from a physical equilibrium. With steady-state data, it is reasonable
to assume that the starting levels of the signals correspond to such an
equilibrium. Thus, you can seek models around zero without modeling the
absolute equilibrium levels in physical units.

5-7

5 Tutorial: Estimating Linear Models Using the Command Line

Zoom in on the plots to see that the earliest moment when the operator
applies a disturbance to the inputs occurs after 25 minutes of steady-state
conditions (or after the first 50 samples). Thus, the average value of the first
50 samples represents the equilibrium conditions.

Use the following commands to remove the equilibrium values from the inputs
and the outputs in both experiments:

% Remove the equilibrium values from the inputs and the outputs in both
% experiments:
Input_exp1 = Input_exp1-...

ones(size(Input_exp1,1),1)*mean(Input_exp1(1:50,:));
Output_exp1 = Output_exp1-...

mean(Output_exp1(1:50,:));
Input_exp2 = Input_exp2-...

ones(size(Input_exp2,1),1)*mean(Input_exp2(1:50,:));
Output_exp2 = Output_exp2-...

mean(Output_exp2(1:50,:));

Note The ones command replicates the two mean values, one for each input,
in a two-dimensional array.

Using Objects to Represent Data for System
Identification
The System Identification Toolbox data objects, iddata and idfrd,
encapsulate both data values and data properties into a single entity. System
Identification Toolbox commands let you conveniently manipulate these data
objects as single entities.

In this portion of the tutorial, you create two iddata objects, one for each
of the two experiments. You use the data from Experiment 1 for model
estimation, and the data from Experiment 2 for model validation. You work
with two independent data sets because you use one data set for model
estimation and the other for model validation.

5-8

Preparing Data

Note When two independent data sets are not available, you can split one
data set into two parts, assuming that each part contains enough information
to adequately represent the system dynamics.

Creating iddata Objects
You must have already loaded the sample data into the MATLAB Workspace
browser, as described in “Loading Data into the MATLAB Workspace
Browser” on page 6-8.

Use these commands to create two data objects, ze and zv:

% Create two data objects, ze and zv.
Ts = 0.5; % Sampling interval is 0.5 min
ze = iddata(Output_exp1,Input_exp1,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);

ze contains data from Experiment 1 and zv contains data from Experiment 2.
Ts is the sampling interval.

The iddata constructor requires three arguments for time-domain data and
has the following syntax:

data_obj = iddata(output,input,sampling_interval);

To view the properties of an iddata object, use the get command. For
example, type this command to get the properties of the estimation data:

get(ze)

5-9

5 Tutorial: Estimating Linear Models Using the Command Line

MATLAB returns the following data properties and values:

Domain: 'Time'
Name: []

OutputData: [2001x1 double]
y: 'Same as OutputData'

OutputName: {'y1'}
OutputUnit: {''}
InputData: [2001x2 double]

u: 'Same as InputData'
InputName: {2x1 cell}
InputUnit: {2x1 cell}

Period: [2x1 double]
InterSample: {2x1 cell}

Ts: 0.5000
Tstart: []

SamplingInstants: [2001x0 double]
TimeUnit: ''

ExperimentName: 'Exp1'
Notes: []

UserData: []

To learn more about these properties, see the iddata reference page.

5-10

Preparing Data

To modify data properties, you can use dot notation or the set command. For
example, to assign channel names and units that label plot axes, type the
following syntax at the MATLAB prompt:

% Set time units to minutes
ze.TimeUnit = 'min';
% Set names of input channels
ze.InputName = {'ConsumptionRate','Current'};
% Set units for input variables
ze.InputUnit = {'kg/min','A'};
% Set name of output channel
ze.OutputName = 'Production';
% Set unit of output channel
ze.OutputUnit = 'mg/min';

% Set validation data properties
zv.TimeUnit = 'min';
zv.InputName = {'ConsumptionRate','Current'};
zv.InputUnit = {'kg/min','A'};
zv.OutputName = 'Production';
zv.OutputUnit = 'mg/min';

You can verify that the InputName property of ze is changed, or “index into”
this property, by typing the following syntax:

ze.inputname

Tip Property names, such as InputUnit, are not case sensitive. You can also
abbreviate property names that start with Input or Output by substituting u
for Input and y for Output in the property name. For example, OutputUnit is
equivalent to yunit.

Plotting the Data
You can plot iddata objects using the MATLAB plot command:

plot(ze) % Plot the estimation data

5-11

5 Tutorial: Estimating Linear Models Using the Command Line

This opens the following plot. The bottom axes show the first input
ConsumptionRate, and the top axes show the output ProductionRate.

Input 1 and Output for ze

For multivariable data, only one input/output pair appears on the plot at a
time. To view the second input Current, select the MATLAB Figure window,
and press Enter to update the plot.

5-12

Preparing Data

Tip For plots of data with multiple inputs and outputs, press Enter to view
the next input/output pair.

Input 2 and Output for ze

5-13

5 Tutorial: Estimating Linear Models Using the Command Line

To plot the validation data in a new MATLAB Figure window, type the
following commands at the MATLAB prompt:

figure % Open a new MATLAB Figure window
plot(zv) % Plot the validation data

Input 1 and Output for zv

5-14

Preparing Data

Select the MATLAB Figure window, and press Enter to view the second input
on the plot.

Input 2 and Output for zv

Zoom in on the plots to see that the process amplifies the first input
(ConsumptionRate) by a factor of 2, and amplifies the second input (Current)
by a factor of 10.

Selecting a Subset of the Data
Before you begin, create a subset of 1000 samples from the original estimation
and validation data sets to speed up the calculations:

Ze1 = ze(1:1000);
Zv1 = zv(1:1000);

5-15

5 Tutorial: Estimating Linear Models Using the Command Line

For more information about indexing into iddata objects, see the
corresponding reference page.

5-16

Estimating Nonparametric Models

Estimating Nonparametric Models

In this section...

“Why Estimate Nonparametric Models?” on page 5-17

“Estimating the Frequency Response” on page 5-17

“Estimating the Step Response” on page 5-20

Why Estimate Nonparametric Models?
Nonparametric models are frequency-response and step-response models,
which can help you understand the dynamic characteristics of your system.
These models are not represented by a compact mathematical formula with
adjustable parameters. Instead, they consist of data tables.

In this portion of the tutorial, you estimate nonparametric models using the
data set ze. You must have already created ze, as described in “Creating
iddata Objects” on page 5-9.

The response plots from these models provide you with the following insights
into your system:

• The response from the first input to the output might be a second-order
function.

• The response from the second input to the output might be a first-order
or an overdamped function.

Estimating the Frequency Response
System Identification Toolbox provides three functions for estimating the
frequency response:

• etfe computes the empirical transfer function using Fourier analysis.

• spa estimates the transfer function using spectral analysis for a fixed
frequency resolution.

• spafdr lets you specify a variable frequency resolution for estimating the
frequency response.

5-17

5 Tutorial: Estimating Linear Models Using the Command Line

Use the spa command to estimate the frequency response:

Ge=spa(ze);

To plot the frequency response as a Bode plot, type the following command at
the MATLAB prompt:

bode(Ge)

This command produces the following plot.

Frequency Response for the First Input-Output Path

The amplitude peaks at the frequency of about 0.7 rad/s, which suggests
a possible resonant behavior (complex poles) for the first input-to-output
combination—ConsumptionRate to ProductionRate.

5-18

Estimating Nonparametric Models

To view the second input Current, select the MATLAB Figure window, and
press Enter. The input/output pair is displayed, as shown in the following
figure.

Frequency Response for the Second Input-Output Path

In both plots, the phase rolls off rapidly, which suggests a time delay for both
input/output combinations.

Tip When your data contains multiple inputs and outputs, press Enter to
view the next input/output pair.

5-19

5 Tutorial: Estimating Linear Models Using the Command Line

Estimating the Step Response
To estimate the step response from the data, use the step command with the
following arguments:

step(ze,30)

The first step argument is the name of the data object. The second argument
is the duration of the step input in the time units you specified (minutes).

This calculation produces the following plot.

Step Response from Both Inputs to the Output

The step response for the first input/output combination suggests an
overshoot, which indicates the presence of an underdamped mode (complex
poles) in the physical process.

5-20

Estimating Nonparametric Models

The step response from the second input to the output shows no overshoot,
which indicates either a first-order response or a higher order response with
real poles (overdamped response).

The step-response plot indicates a nonzero delay in the system, which is
consistent with the rapid phase roll-off you got in the Bode plot you created in
“Estimating the Frequency Response” on page 5-17.

5-21

5 Tutorial: Estimating Linear Models Using the Command Line

Estimating Delays in the System

In this section...

“Why Estimate Delays?” on page 5-22

“Estimating Delays Using an ARX Model” on page 5-22

“Alternative Methods for Estimating Delays” on page 5-23

Why Estimate Delays?
To estimate parametric black-box models using System Identification Toolbox,
you must specify the delay and the model order as inputs.

If you do not know the input/output delays for your system from the
experiment, use System Identification Toolbox to estimate the delay.

Next, as you explore different model structures, you can specify delay values
that are slight variations around the initial delay estimate.

Estimating Delays Using an ARX Model
In the case of single-input systems, you can read the delay on the
impulse-response plot. However, in the case of multiple-input systems, such
as the one in this tutorial, you might be unable to tell which input caused the
initial change in the output and you can use the delayest command instead.

The delayest command estimates the time delay in a dynamic system by
estimating a low-order, discrete-time ARX model with a range of delays, and
then choosing the delay that corresponding to the best fit. The ARX model
structure is one of the simplest black-box parametric structures.

5-22

Estimating Delays in the System

In discrete-time, the ARX structure is a difference equation with the following
form:

y t a y t a y t n

u t n b u t n
na a

k nb k

() () ()
() (

+ − + + − =
− + + − −

1 1 …
… b1 nn e tb + +1) ()

y(t) represents the output at time t, u(t) represents the input at time t, na is
the number of poles, nb is the number of b parameters (equal to the number of
zeros plus 1), nk is the delay (the number of samples before the input affects
output of the system), and e(t) is the white-noise disturbance.

delayest assumes that na=nb=2 and that the noise e is white or insignificant,
and estimates nk.

To estimate the delay in this system, type the following command at the
MATLAB prompt:

delayest(ze)

MATLAB responds with the following:

ans =

5 10

System Identification Toolbox gives two answers because there are two inputs:
the estimated delay for the first input is 5 data samples, and the estimated
delay for the second input is 10 data samples. Because the sampling interval
for the experiments is 0.5 min, this corresponds to a 2.5-min delay before
the first input affects the output, and a 5.0-min delay before the second input
affects the output.

Alternative Methods for Estimating Delays
There are two alternative methods for estimating the time delay in the system:

• Plot the time plot of the input and output data and read the time difference
between the first change in the input and the first change in the output.
This method is practical only for single-input/single-output system; in the

5-23

5 Tutorial: Estimating Linear Models Using the Command Line

case of multiple-input systems, you might be unable to tell which input
caused the initial change in the output.

• Plot the impulse response of the data with a 1-standard-deviation
confidence region. You can estimate the time delay using the time when the
impulse response is first outside the confidence region.

5-24

Estimating Model Orders Using a Simple ARX Structure

Estimating Model Orders Using a Simple ARX Structure

In this section...

“Why Estimate Model Order?” on page 5-25

“Commands for Estimating the Model Order” on page 5-25

“Model Order for the First Input-Output Combination” on page 5-27

“Model Order for the Second Input-Output Combination” on page 5-30

Why Estimate Model Order?
Model order is one or more integers that define the complexity of the model.
In general, model order is related to the number of poles, the number of zeros,
and the response delay (time in terms of the number of samples before the
output responds to the input). The specific meaning of model order depends
on the model structure.

To compute parametric black-box models using System Identification Toolbox,
you must provide the model order as an input. If you do not know the order
of your system, you can estimate it.

After completing the steps in this section, you get the following results:

• For the first input/output combination: na=2, nb=2, and the delay nk=5.

• For the second input/output combination: na=1, nb=1, and the delay nk=10.

If you do not know the model order, use System Identification Toolbox to
estimate the order.

Then, as you explore different model structures, you can specify model-order
values that are slight variations around the initial estimate.

Commands for Estimating the Model Order
In this portion of the tutorial, you use struc, arxstruc, and selstruc to
estimate a collection of ARX models with different combination of orders,
and select the best orders based on the quality of the fit to the data. This

5-25

5 Tutorial: Estimating Linear Models Using the Command Line

approach provides a good initial guess of the model order that captures the
system dynamics.

The following list describes the results of using each command:

• struc creates a matrix of possible model-order combinations for a specified
range of na, nb, and nk values.

• arxstruc takes the output from struc, systematically estimates an
ARX model for each model order, and compares the model output to the
measured output. arxstruc returns the loss function for each model, which
is the normalized sum of squared prediction errors.

• selstruc takes the output from arxstruc and opens the ARX Model
Structure Selection window, which resembles the following figure, to help
you choose the model order.

5-26

Estimating Model Orders Using a Simple ARX Structure

You use the preceding plot to select the best-fit model. The horizontal axis
is the total number of parameters:

Number of parameters = +n na b

For the ARX model, na is the number of poles, nb is the number of b
parameters (equal to the number of zeros plus 1), and nk is the delay.

The vertical axis, called Unexplained output variance (in %), is
the portion of the output not explained by the model—the ARX model
prediction error for a specific number of parameters. The prediction error
is the sum of the squares of the differences between the validation data
output and the model output.

Three rectangles are highlighted on the plot in green, blue, and red. Each
color indicates a type of best-fit criterion, as follows:

- Red — Best fit minimizes the sum of the squares of the difference
between the validation data output and the model output. This rectangle
indicates the overall best fit.

- Green — Best fit minimizes Rissanen MDL criterion.

- Blue — Best fit minimizes Akaike AIC criterion.

In this tutorial, the Unexplained output variance (in %) value remains
approximately constant for the combined number of parameters from 4 to
20. Such constancy indicates that model performance does not improve at
higher orders. Thus, low-order models might fit the data equally well.

Note When you use the same data set for estimation and validation, use
the MDL and AIC criteria to select model orders. These criteria compensate
for overfitting that results from using too many parameters.

Model Order for the First Input-Output Combination
In this tutorial, there are two inputs to the system and one output and you
estimate model orders for each input/output combination independently. You
can either estimate the delays from the two inputs simultaneously or one
input at a time.

5-27

5 Tutorial: Estimating Linear Models Using the Command Line

It makes sense to try the following order combinations for the first
input/output combination:

• na=2:5

• nb=1:5

• nk=5

This is because the nonparametric models you estimated in “Estimating
Nonparametric Models” on page 5-17 show that the response for the first
input/output combination might have a second-order response. Similarly,
in “Estimating Delays in the System” on page 5-22, the delay for this
input/output combination was estimated to be 5.

To estimate model order for the first input/output combination:

1 Use struc to create a matrix of possible model orders.

NN1 = struc(2:5,1:5,5);

2 Use selstruc to compute the loss functions for the ARX models with the
orders in NN1.

selstruc(arxstruc(ze(:,:,1),zv(:,:,1),NN1))

Note (ze(:,:,1) selects the first input in the data.

5-28

Estimating Model Orders Using a Simple ARX Structure

This command opens the interactive ARX Model Structure Selection
window.

Note The Rissanen MDL and Akaike AIC criteria produces equivalent
results and are both indicated by a blue rectangle on the plot.

The red rectangle represents the best overall fit, which occurs for na=2,
nb=3, and nk=5. The height difference between the red and blue rectangles
is insignificant. Therefore, you can choose the parameter combination that
corresponds to the lowest model order.

3 Click the blue rectangle, and then click Select to choose that combination
of orders:

na=2

nb=2

5-29

5 Tutorial: Estimating Linear Models Using the Command Line

nk=5

4 To continue, press any key while in the MATLAB Command Window.

Model Order for the Second Input-Output
Combination
It makes sense to try the following order combinations for the second
input/output combination:

• na=1:3

• nb=1:3

• nk=10

This is because the nonparametric models you estimated in “Estimating
Nonparametric Models” on page 5-17 show that the response for the second
input/output combination might have a first-order response. Similarly,
in “Estimating Delays in the System” on page 5-22, the delay for this
input/output combination was estimated to be 10.

To estimate model order for the second input/output combination:

1 Use struc to create a matrix of possible model orders.

NN2 = struc(1:3,1:3,10);

5-30

Estimating Model Orders Using a Simple ARX Structure

2 Use selstruc to compute the loss functions for the ARX models with the
orders in NN2.

selstruc(arxstruc(ze(:,:,2),zv(:,:,2),NN2))

This command opens the interactive ARX Model Structure Selection
window.

Note The Akaike AIC and the overall best fit criteria produces equivalent
results. Both are indicated by the same red rectangle on the plot.

The height difference between all the rectangles is insignificant, Thus, all
combinations of orders produce similar model performance. Therefore,
you can choose the parameter combination that corresponds to the lowest
model order.

3 Click the yellow rectangle on the far left, and then click Select to choose
the lowest order: na=1, nb=1, and nk=10.

5-31

5 Tutorial: Estimating Linear Models Using the Command Line

4 To continue, press any key while in the MATLAB Command Window.

5-32

Estimating Continuous-Time Process Models

Estimating Continuous-Time Process Models

In this section...

“Specifying the Structure of the Process Model” on page 5-33

“Viewing the Model Structure and Parameter Values” on page 5-34

“Specifying Initial Guesses for Time Delays” on page 5-35

“Estimating Model Parameters Using pem” on page 5-36

“Validating the Process Model” on page 5-38

“Estimating a Noise Model to Improve Results” on page 5-40

Specifying the Structure of the Process Model
In this portion of the tutorial, you estimate a linear, continuous-time process
model. System Identification Toolbox supports continuous-time process
models with at most three poles (which might contain underdamped poles),
one zero, a delay element, and an integrator.

You must have already prepared your data, as described in “Preparing Data”
on page 5-5.

You can use the following results of estimated model orders to specify the
orders of the process model:

• For the first input/output combination, use:

- Two poles, corresponding to na=2 in the ARX model.

- Delay of 5, corresponding to nk=5 samples (or 2.5 minutes) in the ARX
model.

• For the second input/output combination, use:

- One pole, corresponding to na=1 in the ARX model.

- Delay of 10, corresponding to nk=10 samples (or 5 minutes) in the ARX
model.

5-33

5 Tutorial: Estimating Linear Models Using the Command Line

Note Because there is no relationship between the number of zeros estimated
by the discrete-time ARX model and its continuous-time counterpart, you
do not have an estimate for the number of zeros. In this tutorial, you can
specify one zero for the first input/output combination, and no zero for the
second-output combination.

Use the idproc command to create two process model structures, one for
each input/output combination:

midproc0 = idproc({'P2ZUD','P1D'});

The argument of idproc is a cell array that contains two strings, where each
string specifies the model structure for each input/output combination:

• 'P2ZUD' represents a transfer function with two poles (P2), one zero (Z),
underdamped (complex-conjugate) poles (U) and a delay (D).

• 'P1D' represents a transfer function with one pole (P1) and a delay (D).

Viewing the Model Structure and Parameter Values
To view the two resulting process-model structures, type the following
command at the MATLAB prompt:

midproc0

5-34

Estimating Continuous-Time Process Models

MATLAB responds with the following output:

Process model with 2 inputs: y = G_1(s)u_1 + G_2(s)u_2

where
1+Tz*s

G_1(s) = K * ---------------------- * exp(-Td*s)
1+2*Zeta*Tw*s+(Tw*s)^2

with K = NaN
Tw = NaN

Zeta = NaN
Td = NaN
Tz = NaN

K
G_2(s) = ---------- * exp(-Td*s)

1+Tp1*s

with K = NaN
Tp1 = NaN
Td = NaN

This model was not estimated from data.

The parameter values are set to NaN because they are not yet estimated.

Specifying Initial Guesses for Time Delays
Set the time delay property of the model object using dot notation to 2.5 min
and 5 min for both input/output combinations as initial guesses:

midproc0.Td = [2.5 5];

Note When setting the Td model property, you must specify the delays in
terms of actual time units (minutes, in this case) and not the number of
samples.

5-35

5 Tutorial: Estimating Linear Models Using the Command Line

Estimating Model Parameters Using pem
pem is an iterative estimation method, which means that it uses an iterative
nonlinear least-squares algorithm to minimize a cost function. The cost
function is the weighted sum of the squares of the errors.

Depending on its arguments, pem estimates different black-box polynomial
models. You can use pem, for example, to estimate parameters for linear
continuous-time process, state-space, ARX, ARMAX, Box-Jenkins, and
output-error model structures.

You must have already defined the process model structure, as described in
“Specifying the Structure of the Process Model” on page 5-33.

To use pem, you must provide a model structure with unknown parameters
and the estimation data as input arguments. In this case, use midproc0 as
the model structure and Ze1 as the estimation data:

midproc = pem(Ze1,midproc0);
present(midproc)

5-36

Estimating Continuous-Time Process Models

MATLAB responds with the following estimated parameters:

Process model with 2 inputs: y = G_1(s)u_1 + G_2(s)u_2

where
1+Tz*s

G_1(s) = K * ---------------------- * exp(-Td*s)
1+2*Zeta*Tw*s+(Tw*s)^2

with K = 0.12845
Tw = 0.70079

Zeta = 17.876
Td = 2.4739
Tz = 477.14

K
G_2(s) = ---------- * exp(-Td*s)

1+Tp1*s

with K = 10.418
Tp1 = 2.1116
Td = 4.8864

Estimated using PEM from data set Ze1
Loss function 6.2021 and FPE 6.30214

Unlike discrete-time polynomial models, continuous-time process models let
you estimate the delays. In this case, the estimated delay values 2.4739 and
4.8864 are different from the initial values 2.5 and 5, respectively.

Learn More
To learn more about estimating process models, see the corresponding section
in the System Identification Toolbox documentation.

5-37

5 Tutorial: Estimating Linear Models Using the Command Line

Validating the Process Model
In this section, you create a plot that compares the actual output and the
model output using the compare command:

compare(Zv1,midproc)

The preceding plot shows that the model output reasonably agrees with the
measured output: there is an agreement of 65.6% between the model and the
validation data.

Use resid to perform residual analysis:

resid(Zv1,midproc0)

5-38

Estimating Continuous-Time Process Models

Because the sample system has two inputs, there are two cross-correlation
plots of the residuals with each input, as shown in the following figure.

Autocorrelation and Cross-Correlations of Residuals with the First Input

5-39

5 Tutorial: Estimating Linear Models Using the Command Line

After MATLAB displays the first plot, press Enter to view the
cross-correlation with the second input, as shown in the following figure.

Cross-Correlations of Residuals with the Second Input

In the preceding figure, the autocorrelation plot shows values outside the
confidence region and indicates that the residuals are correlated. However,
the cross-correlation with each of the two inputs shows no significant
correlation. This lack of correlation indicates that this process model is
accurate, but that there might be a need for a noise model.

Estimating a Noise Model to Improve Results
This portion of the tutorial shows how you can improve the process model
by including a noise model.

5-40

Estimating Continuous-Time Process Models

In “Validating the Process Model” on page 5-38, you noticed that the process
model performed well except that it produced correlated residuals. This
correlation of residuals indicates evidence of unmodeled dynamics, which
might be entering the system as an external disturbance.

Use the following command to specify a first-order ARMA noise:

midproc2 = pem(Ze1,midproc0,'DisturbanceModel','arma1')

Note You can type 'dist' instead of 'DisturbanceModel'. Property names
are not case sensitive, and you only need to include the portion of the name
that uniquely identifies the property.

Compare the new model to the old model and to the measured data, and
perform residual analysis, as follows:

compare(Zv1,midproc,midproc2)
figure
resid(Zv1,midproc2)

5-41

5 Tutorial: Estimating Linear Models Using the Command Line

The following plot shows that the model output maintains reasonable
agreement with the validation-data output. Press Enter to view the
cross-correlation of the residuals with the second input.

5-42

Estimating Continuous-Time Process Models

However, the next plot shows that adding a noise model improves the result
by producing uncorrelated residuals: the top set of axes show that the
autocorrelation values are inside the confidence bounds.

Learn More
To learn more about estimating noise models, see “Estimating Noise Models”
on page 2-17.

5-43

5 Tutorial: Estimating Linear Models Using the Command Line

Estimating Black-Box Polynomial Models

In this section...

“Initial Orders for Estimating Polynomial Models” on page 5-44

“Estimating a Linear ARX Model” on page 5-45

“Estimating a State-Space Model” on page 5-48

“Estimating a Box-Jenkins Model” on page 5-51

“Comparing Models” on page 5-53

Initial Orders for Estimating Polynomial Models
In this portion of the tutorial, you estimate several different types of black-box
polynomial models.

You must have already prepared your data, as described in “Preparing Data”
on page 5-5.

You can use the following results of estimated model orders to specify the
orders of the process model:

• For the first input/output combination, use:

- Two poles, corresponding to na=2 in the ARX model.

- One zero, corresponding to nb=2 in the ARX model.

- Delay of 5, corresponding to nk=5 samples (or 2.5 minutes) in the ARX
model.

• For the second input/output combination, use:

- One pole, corresponding to na=1 in the ARX model.

- No zeros, corresponding to nb=1 in the ARX model.

- Delay of 10, corresponding to nk=10 samples (or 5 minutes) in the ARX
model.

5-44

Estimating Black-Box Polynomial Models

Estimating a Linear ARX Model

• “About ARX Models” on page 5-45

• “Estimating ARX Models Using arx” on page 5-45

• “Accessing Model Data” on page 5-46

• “Learn More” on page 5-48

About ARX Models
For a single-input/single-output system (SISO), the ARX model structure is:

y t a y t a y t n

u t n b u t n
na a

k nb k

() () ()
() (

+ − + + − =
− + + − −

1 1 …
… b1 nn e tb + +1) ()

y(t) represents the output at time t, u(t) represents the input at time t, na is
the number of poles, nb is the number of zeros plus 1, nk is the number of
samples before the input affects the system output, and e(t) is the white-noise
disturbance.

The ARX model structure does not distinguish between the poles for
individual input/output paths: dividing the ARX equation by A, which
contains the poles, shows that A appears in the denominator for both inputs.
Therefore, you can set na to the sum of the poles for each input/output pair,
which is equal to 3 in this case.

You must specify the model orders to estimate ARX models.

System Identification Toolbox estimates the parameters a an1 … and b bn1 …
using the data and the model orders you specify.

Estimating ARX Models Using arx
Use arx to compute the polynomial coefficients using a fast, noniterative
method:

marx = arx(Ze1,'na',3,'nb',[2 1],'nk',[5 10]);
present(marx) % Displays model parameters

5-45

5 Tutorial: Estimating Linear Models Using the Command Line

MATLAB estimates the polynomials A, B1, and B2:

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)
A(q) = 1 - 1.027 (+-0.02917) q^-1

+ 0.1675 (+-0.04214) q^-2
+ 0.01307 (+-0.02591) q^-3

B1(q) = 1.86 (+-0.1896) q^-5 - 1.608 (+-0.1894) q^-6
B2(q) = 1.612 (+-0.07417) q^-10

The uncertainty for each of the model parameters is computed to 1 standard
deviation and appears in parentheses next to each parameter value.

Tip Alternatively, you can use the following shorthand syntax and specify
model orders as a single vector:

marx = arx(Ze1,[3 2 1 5 10])

Accessing Model Data
The model you estimated, marx, is a discrete-time idpoly object. To get the
properties of this model object, you can use the get function:

get(marx)

5-46

Estimating Black-Box Polynomial Models

MATLAB returns the following model properties:

a: [1 -0.9861 0.1512 0.0095]
b: [2x11 double]
c: 1
d: 1
f: [2x1 double]

da: [0 0.0301 0.0424 0.0261]
db: [2x11 double]
dc: 0
dd: 0
df: [2x1 double]
na: 3
nb: [2 1]
nc: 0
nd: 0
nf: [0 0]
nk: [5 10]

InitialState: 'Auto'
Name: ''

Ts: 0.5000
InputName: {2x1 cell}
InputUnit: {2x1 cell}

OutputName: {'ProductionRate'}
OutputUnit: {'mg/min'}

TimeUnit: 'min'
ParameterVector: [6x1 double]

PName: {}
CovarianceMatrix: [6x6 double]

NoiseVariance: 2.7732
InputDelay: [2x1 double]
Algorithm: [1x1 struct]

EstimationInfo: [1x1 struct]
Notes: {}

UserData: []

5-47

5 Tutorial: Estimating Linear Models Using the Command Line

You can access the information stored by these properties using dot notation.
For example, you can compute the discrete poles of the model by finding the
roots of the A polynomial:

marx_poles=roots(marx.a)

In this case, you access the A polynomial using marx.a.

MATLAB returns the following output:

marx_poles =

0.7751
0.2585

-0.0475

Thus, the model marx describes system dynamics using three discrete poles.

Tip You can also use the zpkdata command to compute the poles of a model
directly.

Learn More
To learn more about estimating polynomial models, see the corresponding
sections in the System Identification Toolbox User’s Guide.

For more information about accessing model data, see the topic on extracting
numerical data from linear models in the System Identification Toolbox User’s
Guide.

Estimating a State-Space Model

• “About State-Space Models” on page 5-49

• “Estimating State-Space Models Using n4sid” on page 5-49

• “Learn More” on page 5-51

5-48

Estimating Black-Box Polynomial Models

About State-Space Models
The general state-space model structure is:

x t Ax t Bu t Ke t
y t Cx t Du t e t
() () () ()
() () () ()

+ = + +
= + +
1

y(t) represents the output at time t, u(t) represents the input at time t, x(t) is
the state values at time t, and e(t) is the white-noise disturbance.

You must specify a single integer as the model order to estimate a state-space
model. By default, the delay equals 1.

System Identification Toolbox estimates the state-space matrices A, B, C, D,
and K using the model order and the data you specify.

The state-space model structure is a good choice for quick estimation because
it contains only two parameters: n is the number of poles (the size of the A
matrix) and nk is the delay.

Estimating State-Space Models Using n4sid
Use the n4sid command to specify a range of model orders and evaluate the
performance of several state-space models (orders 2 to 8):

mn4sid = n4sid(Ze1,2:8,'nk',[5 10]);

5-49

5 Tutorial: Estimating Linear Models Using the Command Line

This command uses the fast, noniterative (subspace) method and opens the
following plot. You use this plot to decide which states provide a significant
relative contribution to the input/output behavior, and which states provide
the smallest contribution.

The vertical axis is a relative measure of how much each state contributes to
the input/output behavior of the model (log of singular values of the covariance
matrix). The horizontal axis corresponds to the model order n. System
Identification Toolbox recommends n=3, indicated by a red rectangle.

To select this model order, type 3 in the MATLAB Command Window, and
press Enter.

By default, n4sid uses a free parameterization of the state-space form. To
estimate a canonical form instead, set the value of the SSParameterization
property to 'Canonical':

mCanonical = n4sid(Ze1,3,'nk',[5 10],...
'ssparameterization','canonical');

present(mCanonical) % Displays model properties

5-50

Estimating Black-Box Polynomial Models

Note When you examine the displayed properties, notice that the model
order is high. This high order occurs because the model uses additional states
to incorporate the input delays.

Learn More
To learn more about estimating state-space models, see the corresponding
section in the System Identification Toolbox User’s Guide.

Estimating a Box-Jenkins Model

• “About Box-Jenkins Models” on page 5-51

• “Estimating a BJ Model Using pem” on page 5-51

• “Learn More” on page 5-53

About Box-Jenkins Models
The general Box-Jenkins (BJ) structure is:

y t
B q
F q

u t nk
C q
D q

e ti

i
i i

i

nu
()

()
()

()
()

()= −() +
=
∑

1

To estimate a BJ model, you need to specify the parameters nb, nf, nc, nd,
and nk.

Whereas the ARX model structure does not distinguish between the poles
for individual input/output paths, the BJ model provides more flexibility in
modeling the poles and zeros of the disturbance separately from the poles
and zeros of the system dynamics.

Estimating a BJ Model Using pem
You can use to estimate the BJ model. pem is an iterative method and has
the following general syntax:

pem(data,'na',na,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)

5-51

5 Tutorial: Estimating Linear Models Using the Command Line

In this case, data is an iddata or idfrd object, and na, nb, nc, nd, nf, and
nk specify the model order.

To estimate the BJ model using pem, type the following command at the
MATLAB prompt:

mbj = pem(Ze1,'nf',[2 1],'nb',[2 1],'nc',1,'nd',1,'nk',[5 10]);
present(mbj)

This command specifies nf=2, nb=2, nk=5 for the first input, and nf=nb=1 and
nk=10 for the second input

Tip Alternatively, you can use the following shorthand syntax that specifies
the orders as a single vector:

mbj = bj(Ze1,[2 1 1 1 2 1 5 10]);

bj is a version of pem that specifically estimates the BJ model structure.

MATLAB estimates the polynomial coefficients, as follows:

Discrete-time IDPOLY model:
y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)]e(t)
B1(q) = 1.903 (+-0.1888) q^-5 - 1.469 (+-0.2304) q^-6
B2(q) = 2.086 (+-0.09506) q^-10
C(q) = 1 + 0.1149 (+-0.04131) q^-1
D(q) = 1 - 0.7364 (+-0.02856) q^-1
F1(q) = 1 - 1.361 (+-0.06205) q^-1 + 0.5982 (+-0.05408) q^-2
F2(q) = 1 - 0.8031 (+-0.009455) q^-1

The uncertainty for each of the model parameters is computed to 1 standard
deviation and appears in parentheses next to each parameter value.

The polynomials C and D give the numerator and the denominator of the
noise model, respectively.

5-52

Estimating Black-Box Polynomial Models

Learn More
To learn more about estimating state-space models, see the corresponding
section in the System Identification Toolbox User’s Guide.

Comparing Models
To compare the output of the ARX, state-space, and Box-Jenkins models with
the measured output, use the compare function:

compare(Zv1,marx,mn4sid,mbj)

compare plots the measured output in the validation data set against the
simulated output from the models. The input data from the validation data
set serves as input to the models.

5-53

5 Tutorial: Estimating Linear Models Using the Command Line

Measured Output and Simulated Outputs

To perform residual analysis on the ARX model, type the following command:

resid(Zv1,marx)

Press Enter to view the cross-correlation with the second input. Because
the sample system has two inputs, there are two plots showing the
cross-correlation of the residuals with each input.

5-54

Estimating Black-Box Polynomial Models

To perform residual analysis on the state-space model, type the following
command:

resid(Zv1,mn4sid)

Finally, to perform residual analysis on the BJ model, type the following
command:

resid(Zv1,mbj)

All three models simulate the output equally well and have uncorrelated
residuals. Therefore, choose the ARX model because it is the simplest of the
three black-box parametric models and adequately captures the process
dynamics.

5-55

5 Tutorial: Estimating Linear Models Using the Command Line

Simulating and Predicting Model Output

In this section...

“Simulating the Model Output” on page 5-56

“Predicting the Future Output” on page 5-58

Simulating the Model Output
In this portion of the tutorial, you simulate the model output. You must have
already created the continuous-time process model midproc2, as described in
“Estimating Continuous-Time Process Models” on page 5-33.

Simulating the model output requires the following information:

• Input values to the model

• Initial conditions for the simulation (also called initial states)

For example, the following commands use the iddata and idinput commands
to construct an input data set, and use sim to simulate the model output:

% Create input for simulation
U = iddata([],idinput([200 2]),'Ts',0.5);
% Simulate the response setting initial conditions
% equal to zero
ysim_1 = sim(midproc2,U,'InitialState','zero')

Carefully consider which initial conditions you use in the simulation. A
system produces different responses for different initial conditions, even when
the input data to the model is the same. If you do not specify the correct
initial states, your model response does not match the measured output
for your data. Therefore, when you use simulation to validate a model by
matching simulated response to measured response, you must estimate the
initial conditions from the measured data and use these as the initial states
of the simulation.

Use pe to estimate the initial conditions X0e in the data set Zv1:

[Err,X0e] = pe(midproc2,Zv1,'estimate');

5-56

Simulating and Predicting Model Output

This function also computes the prediction errors Err between the simulated
and the measured outputs.

Next, simulate the model using the initial states estimated from the data:

ysim_2 = sim(midproc2,U,'InitialState',X0e);

Compare the simulated and the measured output on a plot:

figure
plot([ysim_2, Zv1.y])
legend({'model output','measured'})
xlabel('time'), ylabel('Output')

The comparison of simulated and measured output is displayed in the
following figure.

5-57

5 Tutorial: Estimating Linear Models Using the Command Line

Predicting the Future Output
Many control-design applications require you to predict the future outputs of
a dynamic system using the past input/output data.

For example, use predict to predict the model response five steps ahead:

predict(midproc2,Ze1,5)

5-58

Simulating and Predicting Model Output

The predicted output is displayed in the following figure.

5-59

5 Tutorial: Estimating Linear Models Using the Command Line

To compare the predicted output values with the measured output values,
use the following command:

compare(Ze1,midproc2,5)

The third argument of compare specifies a five-step-ahead prediction, as
shown in the following figure.

Note When you do not specify a third argument, as in “Simulating the Model
Output” on page 5-56, compare assumes an infinite prediction horizon and
simulates the model output.

5-60

Simulating and Predicting Model Output

Use pe to compute the prediction error Err between the predicted output of
midproc2 and the measured output. Then, plot the error spectrum on a Bode
plot.

[Err] = pe(midproc2,Zv1);
bode(spa(Err,[],logspace(-2,2,200)),...

'mode','same','sd',1,'fill')

As shown in the following figure, the prediction errors are plotted with a
1-standard-deviation confidence interval. The errors are greater at high
frequencies because of the high-frequency nature of the disturbance.

5-61

5 Tutorial: Estimating Linear Models Using the Command Line

5-62

6

Tutorial: Estimating
Nonlinear Black-Box
Models

About This Tutorial (p. 6-3) Overview of the tutorial
for estimating nonlinear
black-box models from
single-input/single-output (SISO)
data.

What Are Nonlinear Black-Box
Models? (p. 6-5)

Descriptions of supported nonlinear
black-box models.

Preparing Data (p. 6-8) How to load the sample MAT-file into
the MATLAB Workspace browser,
create a data object, open the System
Identification Tool GUI, and import
data into the System Identification
Tool from the MATLAB Workspace
browser.

6 Tutorial: Estimating Nonlinear Black-Box Models

Estimating Nonlinear ARX Models
(p. 6-13)

How to estimate and validate
nonlinear ARX models for
single-input/single-output (SISO)
data using the System Identification
Tool GUI.

Estimating Hammerstein-Wiener
Models (p. 6-27)

How to estimate and validate
Hammerstein-Wiener models for
single-input/single-output (SISO)
data using the System Identification
Tool GUI.

6-2

About This Tutorial

About This Tutorial

In this section...

“Objectives” on page 6-3

“Sample Data” on page 6-3

Objectives
Estimate and validate nonlinear models from single-input/single-output
(SISO) data to find the one that best represents your system dynamics.

After completing this tutorial, you will be able to accomplish the following
tasks using the System Identification Tool GUI:

• Import data objects from the MATLAB Workspace browser into the GUI.

• Estimate and validate nonlinear models from the data.

• Plot and analyze the behavior of the nonlinearities.

Sample Data
The sample data you use in this tutorial is in twotankdata.mat, which
contains SISO time-domain data for a two-tank system, shown in the
following figure.

6-3

6 Tutorial: Estimating Nonlinear Black-Box Models

������

������

Two-Tank System

In the two-tank system, water pours through a pipe into Tank 1, drains into
Tank 2, and leaves the system through a small hole at the bottom of Tank 2.
The measured input u(t) to the system is the voltage applied to the pump that
feeds the water into Tank 1 (in volts). The measured output y(t) is the height
of the water in the lower tank (in meters).

Based on Bernoulli’s law, which states that water flowing through a small
hole at the bottom of a tank depends nonlinearly on the level of the water in
the tank, you expect the relationship between the input and the output data
to be nonlinear.

twotankdata.mat includes 3000 samples with a sampling interval of 0.2 s.

6-4

What Are Nonlinear Black-Box Models?

What Are Nonlinear Black-Box Models?

In this section...

“Types of Nonlinear Black-Box Models” on page 6-5

“What Is a Nonlinear ARX Model?” on page 6-6

“What Is a Hammerstein-Wiener Model?” on page 6-6

Types of Nonlinear Black-Box Models
System Identification Toolbox lets you estimate nonlinear discrete-time
black-box models for both single-output and multiple-output time-domain
data. You can choose from two types of nonlinear, black-box model structures:

• Nonlinear ARX models

• Hammerstein-Wiener models

Note You can estimate Hammerstein-Wiener black-box models from
input/output data only. These models do not support time-series data, where
there is no input.

To learn how to estimate nonlinear black-box models at the command line, see
the topics on estimating nonlinear models in System Identification Toolbox
User’s Guide.

6-5

6 Tutorial: Estimating Nonlinear Black-Box Models

What Is a Nonlinear ARX Model?
Nonlinear ARX models describe nonlinear structures using a parallel
combination of nonlinear and linear blocks. The nonlinear and linear
functions are expressed in terms of variables called regressors, which System
Identification Toolbox calculates using the models orders you specify.

The model output is a function of the regressors, such that:

ˆ (), (), (),y g y t u t y t= − − −()1 1 2 …

The function g is a combination of a linear function and a nonlinear function.
The nonlinear function might be a binary partition tree, a neural network, or
a network based on wavelets. The following figure shows how the predicted
output of the model is formed from the inputs and outputs.

����������
	
����
��
������
�

��
����
�
�������

������
����

�������
����

���������������������������� ��
��
������
�

System Identification Toolbox computes regressors by performing
transformations of the measured input u(t) and output y(t) signals. For
example, regressors can be delayed inputs and outputs, such as u(t-1) and
y(t-3). Regressors can also be nonlinear functions of inputs and outputs, such
as tan(u(t-1)) or u(t-1)y(t-3). You can either use default regressors, or specify
your own custom functions of input and output signals.

You choose a nonlinear structure that independently combines linear and
nonlinear regressors and the structure of the nonlinearity itself, such as a
binary partition tree or a network based on wavelets. System Identification
Toolbox uses input/output data to find the linear and nonlinear mappings that
give the best predicted outputs of the nonlinear model.

What Is a Hammerstein-Wiener Model?
Hammerstein-Wiener models describe nonlinear structures using one or two
static nonlinear blocks (no dynamics) in series with a linear block. Specifically,

6-6

What Are Nonlinear Black-Box Models?

the input signal comes into a static nonlinearity, then goes into a linear
dynamic system, and finally passes into a second static nonlinearity, as shown
in the following figure.

�����
����

������
����

�����
	
����
�����

 ��
��
!�
��

������
	
����
�����

In System Identification Toolbox, the linear block is a discrete-time transfer
function and the nonlinear blocks are implemented using nonlinearity
estimators. If you know that your system includes saturation or dead-zone
nonlinearities, you can specify these specialized nonlinearity estimators in
your model.

6-7

6 Tutorial: Estimating Nonlinear Black-Box Models

Preparing Data

In this section...

“Loading Data into the MATLAB Workspace Browser” on page 6-8

“Creating iddata Objects” on page 6-8

“Starting the System Identification Tool” on page 6-10

“Importing Data Objects into the System Identification Tool” on page 6-11

Loading Data into the MATLAB Workspace Browser
Load sample data in twotankdata.mat by typing the following command at
the MATLAB prompt:

load twotankdata

This command loads the following two variables into the MATLAB Workspace
browser:

• y is the output data, which is the water height in Tank 2 (in meters).

• u is the input data, which is the voltage applied to the pump that feeds the
water into Tank 1 (in volts).

Creating iddata Objects
System Identification Toolbox data objects encapsulate both data values and
data properties into a single entity. System Identification Toolbox commands
let you conveniently manipulate these data objects as single entities.

You must have already loaded the sample data into the MATLAB Workspace
browser, as described in “Loading Data into the MATLAB Workspace
Browser” on page 6-8.

6-8

Preparing Data

Use the following commands to create two data objects, ze and zv, where ze
contains data for model estimation and zv contains data for model validation.
Ts is the sampling interval.

Ts = 0.2; % Sampling interval is 0.5 min
z = iddata(y,u,Ts);
% First 1000 samples used for estimation
ze = z(1:1000);
% Remaining samples used for validation
zv = z(1001:3000);

To view the properties of an iddata object, use the get command. For
example, type this command to get the properties of the estimation data:

get(ze)

MATLAB returns the following data properties and values:

Domain: 'Time'
Name: []

OutputData: [1000x1 double]
y: 'Same as OutputData'

OutputName: {'y1'}
OutputUnit: {''}
InputData: [1000x1 double]

u: 'Same as InputData'
InputName: {'u1'}
InputUnit: {''}

Period: Inf
InterSample: 'zoh'

Ts: 0.2000
Tstart: 0.2000

SamplingInstants: [1000x0 double]
TimeUnit: ''

ExperimentName: 'Exp1'
Notes: []

UserData: []

To learn more about these properties, see the iddata reference pages.

6-9

6 Tutorial: Estimating Nonlinear Black-Box Models

To modify data properties, you can use dot notation or the set command. For
example, to assign channel names and units that label plot axes, type the
following syntax at the MATLAB prompt:

% Set time units to minutes
ze.TimeUnit = 'sec';
% Set names of input channels
ze.InputName = 'Voltage';
% Set units for input variables
ze.InputUnit = 'V';
% Set name of output channel
ze.OutputName = 'Height';
% Set unit of output channel
ze.OutputUnit = 'm';

% Set validation data properties
zv.TimeUnit = 'sec';
zv.InputName = 'Voltage';
zv.InputUnit = 'V';
zv.OutputName = 'Height';
zv.OutputUnit = 'm';

To verify that the InputName property of ze is changed, type the following
command:

ze.inputname

Tip Property names, such as InputName, are not case sensitive. You can also
abbreviate property names that start with Input or Output by substituting u
for Input and y for Output in the property name. For example, OutputUnit is
equivalent to yunit.

Starting the System Identification Tool
To open the System Identification Tool GUI, type the following command at
the MATLAB prompt:

ident

6-10

Preparing Data

The default session name, Untitled, displays in the title bar.

Importing Data Objects into the System Identification
Tool
You can import the data objects into the GUI from the MATLAB Workspace
browser.

You must have already created the data objects, as described in “Creating
iddata Objects” on page 6-8, and opened the GUI, as described in “Starting
the System Identification Tool” on page 6-10.

1 In the System Identification Tool window, select Import data > Data
object. This action opens the Import Data dialog box.

6-11

6 Tutorial: Estimating Nonlinear Black-Box Models

2 Enter ze in the Object field to import the estimation data. Press Enter.
This action enters the object information into the fields.

Click More to view the following additional information about this data,
including channel names and units.

3 Click Import to add the icon named ze to the System Identification Tool
window.

4 In the Import Data dialog box, type zv in the Object field to import the
validation data. Press Enter.

5 Click Import to add the icon named zv to the System Identification Tool
window.

6 In the Import Data dialog box, click Close.

7 In the System Identification Tool window, drag the ze icon to the Working
Data rectangle, and drag the zv icon to the Validation Data rectangle.

6-12

Estimating Nonlinear ARX Models

Estimating Nonlinear ARX Models

In this section...

“Estimating a Nonlinear ARX Model with Default Settings” on page 6-13

“Plotting Nonlinearity Cross-Sections for Nonlinear ARX Models” on page
6-17

“Changing the Nonlinear ARX Model Structure” on page 6-20

“Selecting a Subset of Regressors in the Nonlinear Block” on page 6-22

“Changing the Nonlinearity Estimator in a Nonlinear ARX Model” on page
6-24

“Selecting the Best Model” on page 6-25

Estimating a Nonlinear ARX Model with Default
Settings
In this portion of the tutorial, you estimate a nonlinear ARX model using
default estimation options.

You must have already prepared the data, as described in “Preparing Data”
on page 6-8.

6-13

6 Tutorial: Estimating Nonlinear Black-Box Models

1 In the System Identification Tool window, select Estimate > Nonlinear
models to open the Nonlinear Models dialog box.

The Model Type tab is already open and the default Model Structure is
Nonlinear ARX.

In the Regressors tab, the model orders for both Input Channels and
Output Channels are specified by the Delay of 1 and No. of Terms
equal to 2. Thus, the model output y(t) is related to the input u(t) via the
following nonlinear autoregressive equation:

y t f y t y t u t u t() (), (), (), ()= − − − −()1 2 1 2

f is the nonlinearity estimator you select in the Model Properties tab.

6-14

Estimating Nonlinear ARX Models

2 Click the Model Properties tab.

The Nonlinearity represents the nonlinear function f and is already set
to Wavelet Network, by default. The number of units for the nonlinearity
estimator is set to Select automatically, which lets the algorithm search
for the best number of nonlinearity units during estimation.

3 Click Estimate. This selection adds the model nlarx1 to the System
Identification Tool window, as shown in the following figure.

6-15

6 Tutorial: Estimating Nonlinear Black-Box Models

The Nonlinear Models dialog box displays the following estimation
information in the Estimation tab.

Note Fit (%) is computed using the estimation data set, and not the
validation data set. However, the model output plot shows the fit to the
validation data set.

4 In the System Identification Tool window, select the Model output check
box. Simulation of the model output uses the input validation data as input
to the model. It plots the simulated output on top of the output validation
data.

6-16

Estimating Nonlinear ARX Models

The Best Fits area of the Model Output plot shows that the agreement
between the model output and the validation-data output is 60.91%.

Plotting Nonlinearity Cross-Sections for Nonlinear
ARX Models
Perform the following procedure to view the shape of the nonlinearity as a
function of regressors on a Nonlinear ARX Model plot.

6-17

6 Tutorial: Estimating Nonlinear Black-Box Models

1 In the System Identification Tool window, select the Nonlinear ARX check
box to view the nonlinearity cross-sections.

By default, the plot shows the relationship between the output regressors
Height(t-1) and Height(t-2). This plot shows a regular plane in
the following figure. Thus, the relationship between the regressors is
approximately a linear plane.

6-18

Estimating Nonlinear ARX Models

2 In the Nonlinear ARX Model Plot window, keep the default value for
Regressor 1 at Voltage(t-1). Set Regressor 2 to Voltage(t-2). Click
Apply.

The relationship between these regressors is nonlinear, as shown in the
following plot.

3 To rotate the nonlinearity surface, select Style > 3D Rotate and drag
the plot to a new orientation.

4 To display a 1–D cross-section for Regressor 1, set Regressor 2 to none,
and click Apply. The following figure shows the resulting nonlinearity

6-19

6 Tutorial: Estimating Nonlinear Black-Box Models

magnitude for Regressor 1, which represents the time-shifted voltage
signal, Voltage(t-1).

Changing the Nonlinear ARX Model Structure
In this portion of the tutorial, you estimate a nonlinear ARX model after
modifying the default input delay and the nonlinearity settings. Typically,
you select model orders and delays by trial and error until you get a model
that produces an accurate fit to the data.

You must have already estimated the nonlinear ARX model with default
settings, as described in “Estimating a Nonlinear ARX Model with Default
Settings” on page 6-13.

1 In the Nonlinear Models dialog box, click the Model Type tab, and click
the Regressors tab.

6-20

Estimating Nonlinear ARX Models

2 For the Voltage input channel, double-click the corresponding Delay cell,
enter 3, and press Enter.

This action updates the Resulting Regressors list. The list now includes
Voltage(t-3) and Voltage(t-4), which are two terms with a minimum
input delay of three samples.

3 Click Estimate.

This action adds the model nlarx2 to the System Identification Tool
window and updates the Model Output window to include this model. The
Nonlinear Models dialog box displays the new estimation information in
the Estimation tab.

The Best Fits area of the Model Output window shows that the nlarx2
fit is 85.36%.

4 In the Nonlinear Models dialog box, click the Model Properties tab.

5 In the Number of units in nonlinear block, select Enter, and type 6.

6-21

6 Tutorial: Estimating Nonlinear Black-Box Models

6 Click Estimate.

This action adds the model nlarx3 to the System Identification Tool
window. It also updates the Model Output window, as shown in the
following figure.

The Best Fits area of the Model Output window shows that the nlarx3
fit is 86.28%.

Selecting a Subset of Regressors in the Nonlinear
Block
In this portion of the tutorial, you can try to improve the fit by selecting a
subset of standard regressors that type as inputs to the nonlinear block. By
default, all standard and custom regressors are used in the nonlinear block.
In this example, you have only standard regressors.

You must have already specified the model structure, as described in
“Changing the Nonlinear ARX Model Structure” on page 6-20.

6-22

Estimating Nonlinear ARX Models

1 In the Nonlinear Models dialog box, click the Model Type tab, and click
the Regressors tab.

2 Click Edit Regressors to open the Model Regressors dialog box.

3 Clear the following check boxes:

• Height(t-2)

• Voltage(t-1)

Click OK.

This action excludes the time-shifted Height(t-2) and Voltage(t-1) from
the list of inputs to the nonlinear block.

6-23

6 Tutorial: Estimating Nonlinear Black-Box Models

4 Click Estimate.

This action adds the model nlarx4 to the System Identification Tool
window. It also updates the Model Output window, as shown in the
following figure.

The Best Fits area of the Model Output window shows that the nlarx4
fit is 86.39%, which is only a fraction of a percent improvement from the
previous fit.

Changing the Nonlinearity Estimator in a Nonlinear
ARX Model
In this portion of the example, you improve the fit of the model estimated with
default settings, nlarx1, by changing the nonlinearity.

1 In the Nonlinear Models dialog box, click the Model Type tab.

2 In the Initial model list, select nlarx1.

6-24

Estimating Nonlinear ARX Models

3 Click the Model Properties tab.

4 In the Nonlinearity list, select Sigmoid Network.

5 In the Number of units in nonlinear block field, type 6.

6 Click Estimate.

This action adds the model nlarx5 to the System Identification Tool
window. It also updates the Model Output plot, as shown in the following
figure.

The Best Fits area of the Model Output window shows that the nlarx5
fit is 91.86%.

Selecting the Best Model
The best model is the simplest model that accurately describes the dynamics.
In this tutorial, the best model fit was produced in “Changing the Nonlinearity
Estimator in a Nonlinear ARX Model” on page 6-24, as shown in the following
figure.

6-25

6 Tutorial: Estimating Nonlinear Black-Box Models

6-26

Estimating Hammerstein-Wiener Models

Estimating Hammerstein-Wiener Models

In this section...

“Estimating Hammerstein-Wiener Models with Default Settings” on page
6-27

“Plotting the Nonlinearities and Linear Transfer Function” on page 6-31

“Changing the Hammerstein-Wiener Model Structure” on page 6-35

“Changing the Nonlinearity Estimator in a Hammerstein-Wiener Model”
on page 6-37

“Selecting the Best Model” on page 6-39

Estimating Hammerstein-Wiener Models with Default
Settings
In this portion of the tutorial, you estimate nonlinear Hammerstein-Wiener
models using default estimation options.

You must have already prepared the data, as described in “Preparing Data”
on page 6-8.

1 In the System Identification Tool window, select Estimate > Nonlinear
models to open the Nonlinear Models dialog box.

2 In the Model Type tab, select Hammerstein-Wiener in the Model
Structure list.

6-27

6 Tutorial: Estimating Nonlinear Black-Box Models

3 Keep the defaults in the I/O Nonlinearity tab.

By default, the nonlinearity estimator is Piecewise Linear with 10 units
for Input Channels and Output Channels.

6-28

Estimating Hammerstein-Wiener Models

4 Keep the defaults in the Linear Block tab.

By default, the model orders and delays of the linear output-error (OE)
model are nb=2, nf=3, and nk=1.

6-29

6 Tutorial: Estimating Nonlinear Black-Box Models

5 Click Estimate.

This action adds the model nlhw1 to the System Identification Tool window,
as shown in the following figure.

6-30

Estimating Hammerstein-Wiener Models

6 In the System Identification Tool window, select the Model output check
box.

Simulation of the model output uses the input validation data as input to
the model. It plots the simulated output on top of the output validation
data.

The Best Fits area of the Model Output window shows that the agreement
between the model output and the validation-data output is 28.47%. Thus,
the default settings do not produce an accurate fit.

Plotting the Nonlinearities and Linear Transfer
Function
You can plot the input/output nonlinearities and the linear transfer function
of the model on a Hammerstein-Wiener plot.

6-31

6 Tutorial: Estimating Nonlinear Black-Box Models

1 In the System Identification Tool window, select the Hamm-Wiener check
box to view the Hammerstein-Wiener model plot.

The plot displays the input nonlinearity, as shown in the following figure.

6-32

Estimating Hammerstein-Wiener Models

2 Click the yNL rectangle in the top portion of the Hammerstein-Wiener
Model Plot window.

The plot updates to display the output nonlinearity.

6-33

6 Tutorial: Estimating Nonlinear Black-Box Models

3 Click the Linear Block rectangle in the top portion of the
Hammerstein-Wiener Model Plot window.

The plot updates to display the step response of the linear transfer function.

6-34

Estimating Hammerstein-Wiener Models

4 In the Choose plot type list, select Bode. This action displays a Bode plot
of the linear transfer function, as shown in the following figure.

Changing the Hammerstein-Wiener Model Structure
In this portion of the tutorial, you estimate a Hammerstein-Wiener model
after modifying the default model order and the nonlinearity settings.
Typically, you select model orders and delays by trial and error until you get a
model that produces an accurate fit to the data.

You must have already estimated the Hammerstein-Wiener model with
default settings, as described in “Estimating Hammerstein-Wiener Models
with Default Settings” on page 6-27.

1 In the Nonlinear Models dialog box, click the Model Type tab, and click
the Linear Block tab.

6-35

6 Tutorial: Estimating Nonlinear Black-Box Models

2 For the Voltage input channel, double-click the corresponding Input
Delay (nk) cell, type 3, and press Enter.

3 Click Estimate.

This action adds the model nlhw2 to the System Identification Tool window
and the Model Output window is updated to include this model, as shown
in the following figure.

The Best Fits area of the Model Output window shows that the nlhw2
fit is 62.95%.

4 In the Nonlinear Models dialog box, select the I/O Nonlinearity tab.

5 For the Voltage input channel, double-click the corresponding No. of
Units cell, and type 20 as the number of units. Press Enter.

This action changes the number of nonlinearity units for the Piecewise
Linear nonlinearity estimator corresponding to the input channel.

6-36

Estimating Hammerstein-Wiener Models

6 Click Estimate.

This action adds the nlhw3 model to the System Identification Tool window.
It also updates the Model Output window, as shown in the following figure.

The Best Fits area of the Model Output window shows that the nlhw3
fit is 70.04%.

Changing the Nonlinearity Estimator in a
Hammerstein-Wiener Model
In this portion of the example, you improve the fit by changing the
nonlinearity estimator.

1 In the Nonlinear Models dialog box, click the Model Type tab, and click
the Linear Block tab.

2 For the Voltage input channel, double-click the corresponding Input
Delay (nk) cell, type 1, and press Enter.

6-37

6 Tutorial: Estimating Nonlinear Black-Box Models

This action restores the input delay to the default value.

3 In the Nonlinear Models dialog box, click the Model Type tab, and click
the I/O Nonlinearity tab.

4 For the Voltage input, click the Nonlinearity cell, and select Sigmoid
Network from the list, as shown in the following figure.

This action updates the corresponding No. of Units cell to 10 sigmoid
units, as shown in the following figure.

6-38

Estimating Hammerstein-Wiener Models

5 Click Estimate.

This action adds the model nlhw4 to the System Identification Tool window.
It also updates the Model Output window, as shown in the following figure.

The Best Fits area of the Model Output window shows that the nlhw4
fit is 72.01%.

Tip If you know that your system includes saturation or dead-zone
nonlinearities, you can specify these specialized nonlinearity estimators
in your model. Piecewise Linear and Sigmoid Network are nonlinearity
estimators for general nonlinearity approximation.

Selecting the Best Model
The best model is the simplest model that accurately describes the dynamics.

6-39

6 Tutorial: Estimating Nonlinear Black-Box Models

In this example, the best model fit was produced in “Changing the
Nonlinearity Estimator in a Hammerstein-Wiener Model” on page 6-37, as
shown in the following figure.

6-40

Index

IndexA
ARMAX

estimating using the System Identification
Tool 3-35

ARX
estimating at the command line 5-44
estimating using Quick Start 3-24

B
black-box models

advantages 2-8
definition 2-4
estimating using Quick Start 3-24
supported types 2-4

Box-Jenkins models
estimating at the command line 5-44

C
comparing models

at the command line 5-53
continuous-time models

definition 2-6
supported 2-15

D
data

creating iddata object 5-9
estimation versus validation 2-4
importing MAT-file into System Identification

Tool 3-6
importing object into System Identification

Tool 4-7
loading into the MATLAB Workspace

browser 3-5
plotting at the command line 5-6
plotting iddata object 5-6

plotting in the System Identification
Tool 3-11

preprocessing in the System Identification
Tool 3-11

delay
estimating at the command line 5-22
estimating using the System Identification

Tool 3-30
discrete-time models

definition 2-6
supported 2-15

disturbance model. See noise model
dynamic system 2-3

E
estimation data 2-4
exporting models

to MATLAB 3-49
to the LTI Viewer 3-51

F
feedback 2-20

detecting 2-20
frequency-response models

definition 2-5
estimating at the command line 5-17
estimating using Quick Start 3-24

G
grey-box models

advantages 2-9
definition 2-4

I
iddata object

creating 5-9
plotting 5-6

Index-1

Index

importing data
iddata object into System Identification

Tool 4-7
MAT-file into System Identification Tool 3-6

impulse-response models
estimating at the command line 5-17
estimating using Quick Start 3-24

L
linear models

estimating at the command line 5-3
estimating using the System Identification

Tool 3-3
versus nonlinear 2-10

linear nonparametric model 2-4
loading data into the MATLAB Workspace

browser 3-5
LTI Viewer 3-51

M
model order

estimating at the command line 5-25
estimating using the System Identification

Tool 3-30
model parameters

viewing in the System Identification
Tool 3-46

models
choosing linear or nonlinear 2-10
continuous time 2-6
definition 2-3
discrete time 2-6
estimating at the command line 5-3
estimating in the System Identification

Tool 3-3
estimating low-order continuous-time 4-3
estimating using Quick Start 3-24
nonparametric 2-4

parametric 2-5
supported black-box 2-4
using 5-56

N
noise

affecting model choice 2-18
noise model 2-7

definition 2-17
estimating for process model 4-23
when to estimate 2-18

nonlinear models
Hammerstein-Wiener model 6-5
nonlinear ARX model 6-5
when to estimate 2-10

nonparametric model
analyzing plots 3-24
definition 2-4

P
parametric model

definition 2-5
plotting data

at the command line 5-6
in the System Identification Tool 3-11

plotting models
in the LTI Viewer 3-51

prediction
at the command line 5-56

preprocessing data
in the System Identification Tool 3-11

process models
defining structure using idproc 5-33
estimating at the command line 5-33
estimating noise models 4-23
estimating using the System Identification

Tool 4-3

Index-2

Index

Q
Quick Start

for estimating models 3-24
for preprocessing data 3-20

R
removing data sets in the System Identification

Tool 3-21
residuals

plotting using the System Identification
Tool 3-43

S
simulation

at the command line 5-56
using Simulink 4-31

Simulink 4-31
state-space models

estimating at the command line 5-44
estimating using Quick Start 3-24
estimating using the System Identification

Tool 3-35
step-response models

estimating at the command line 5-17
estimating using Quick Start 3-24

System Identification Tool
estimating continuous-time process

models 4-3
estimating linear models 3-3
estimating models using Quick Start 3-24
exporting models to MATLAB 3-49

exporting models to the LTI Viewer 3-51
removing data sets 3-21
saving sessions 3-21
starting 1-7 3-5
versus command line 1-8

System Identification Toolbox
about 1-2
demos 1-12
documentation 1-11
related products 1-4
resources 1-13
using with Simulink 4-31
workflow 1-9

T
transient-response models

definition 2-5
estimating at the command line 5-17
estimating using Quick Start 3-24

trash 3-21

U
using System Identification Toolbox 1-9

V
validating models

at the command line 5-38
using the System Identification Tool 3-39

validation data 2-4

Index-3

	toc
	About the Developers
	Introduction to System Identification Toolbox
	What Is System Identification Toolbox?
	What You Can Accomplish Using This Toolbox
	Types of Data You Can Model
	Stages of Identifying Dynamic Systems
	Using Estimated Models
	Related Products

	Starting System Identification Toolbox
	When to Use the GUI Versus the Command Line
	How to Use System Identification Toolbox
	Accessing the Documentation and Demos
	Accessing Documentation
	Accessing Demos

	Learning More

	Choosing Models to Estimate
	About Models
	What Is a Model?
	Categories of Models
	User-Defined (Grey-Box) Models
	Black-Box Models
	Continuous-Time Models
	Discrete-Time Models

	Supported Models
	Mathematical Description of Dynamic Models

	When to Estimate Black-Box Models
	When to Estimate Models from First Principles
	When to Estimate Linear Versus Nonlinear Models
	Choosing Models Based on Available Data
	Supported Models for Time-Domain Data
	Continuous-Time Models
	Discrete-Time Models
	Grey-Box Models
	Nonlinear Models

	Supported Models for Frequency-Domain Data
	Continuous-Time Models
	Discrete-Time Models
	Grey-Box Models
	Nonlinear Models

	Supported Continuous-Time and Discrete-Time Models
	Estimating Noise Models
	What Is a Noise Model?
	When to Estimate a Noise Model
	Types of Model Structures That Support Noise Models

	How Feedback Affects Model Choice
	Unreliable Models in the Presence of Feedback
	Detecting Feedback in the Data

	Modeling Multiple-Output Systems
	Challenges of Modeling Multiple-Output Systems
	Modeling Multiple Outputs Directly
	Modeling Multiple Outputs as a Combination of Single-Output Mode

	Tutorial: Estimating Linear Models Using the GUI
	About This Tutorial
	Objectives
	Sample Data

	Preparing Data
	Loading Data into the MATLAB Workspace Browser
	Opening the System Identification Tool GUI
	Importing Data Arrays into the System Identification Tool
	Plotting and Preprocessing Data

	Saving the GUI Session
	Estimating Preliminary Models
	Why Estimate Preliminary Models?
	Using Quick Start to Estimate Preliminary Models
	Validating Preliminary Models
	Step-Response Plot
	Frequency-Response Plot
	Model-Output Plot

	Types of Models Generated by Quick Start

	Estimating Accurate Models
	Strategy for Getting Accurate Models
	Estimating a Range of Model Orders
	About ARX Models
	How to Estimate Model Orders

	Estimating State-Space and ARMAX Models
	About State-Space Models
	About ARMAX Models
	How to Estimate State-Space and ARMAX Models
	Learn More

	Choosing the Best Model
	Summary of Models
	Examining the Model Output
	Examining Model Residuals

	Viewing Model Parameters
	Viewing Model Parameter Values
	Viewing Parameter Uncertainties

	Exporting the Model to the MATLAB Workspace Browser
	Exporting the Model to the LTI Viewer

	Tutorial: Estimating Process Models Using the GUI
	About This Tutorial
	Objectives
	Sample Data

	What Is a Continuous-Time Process Model?
	Preparing Data
	Loading Data into the MATLAB Workspace Browser
	Opening the System Identification Tool GUI
	Importing Data Objects into the System Identification Tool
	Plotting and Preprocessing Data

	Estimating Second-Order Process Models with Complex Poles
	Estimating an Initial Model
	Tips for Specifying Known Parameters
	Validating the Initial Model
	Examining Model Output
	Examining Model Residuals

	Refining the Process Model
	Estimating Models with Modified Settings
	Comparing Models

	Viewing Process Model Parameters
	Viewing Model Parameter Values
	Viewing Parameter Uncertainties

	Exporting the Model to the MATLAB Workspace Browser
	Using Simulink with System Identification Toolbox
	Preparing Input Data in the MATLAB Workspace Browser
	Building the Simulink Model
	Configuring Blocks and Simulation Parameters
	Running the Simulation

	Tutorial: Estimating Linear Models Using the Command Line
	About This Tutorial
	Objectives
	Sample Data

	Preparing Data
	Loading Data into the MATLAB Workspace Browser
	Plotting the Input/Output Data
	Removing Equilibrium Values from the Data
	Using Objects to Represent Data for System Identification
	Creating iddata Objects
	Plotting the Data
	Selecting a Subset of the Data

	Estimating Nonparametric Models
	Why Estimate Nonparametric Models?
	Estimating the Frequency Response
	Estimating the Step Response

	Estimating Delays in the System
	Why Estimate Delays?
	Estimating Delays Using an ARX Model
	Alternative Methods for Estimating Delays

	Estimating Model Orders Using a Simple ARX Structure
	Why Estimate Model Order?
	Commands for Estimating the Model Order
	Model Order for the First Input-Output Combination
	Model Order for the Second Input-Output Combination

	Estimating Continuous-Time Process Models
	Specifying the Structure of the Process Model
	Viewing the Model Structure and Parameter Values
	Specifying Initial Guesses for Time Delays
	Estimating Model Parameters Using pem
	Learn More

	Validating the Process Model
	Estimating a Noise Model to Improve Results
	Learn More

	Estimating Black-Box Polynomial Models
	Initial Orders for Estimating Polynomial Models
	Estimating a Linear ARX Model
	About ARX Models
	Estimating ARX Models Using arx
	Accessing Model Data
	Learn More

	Estimating a State-Space Model
	About State-Space Models
	Estimating State-Space Models Using n4sid
	Learn More

	Estimating a Box-Jenkins Model
	About Box-Jenkins Models
	Estimating a BJ Model Using pem
	Learn More

	Comparing Models

	Simulating and Predicting Model Output
	Simulating the Model Output
	Predicting the Future Output

	Tutorial: Estimating Nonlinear Black-Box Models
	About This Tutorial
	Objectives
	Sample Data

	What Are Nonlinear Black-Box Models?
	Types of Nonlinear Black-Box Models
	What Is a Nonlinear ARX Model?
	What Is a Hammerstein-Wiener Model?

	Preparing Data
	Loading Data into the MATLAB Workspace Browser
	Creating iddata Objects
	Starting the System Identification Tool
	Importing Data Objects into the System Identification Tool

	Estimating Nonlinear ARX Models
	Estimating a Nonlinear ARX Model with Default Settings
	Plotting Nonlinearity Cross-Sections for Nonlinear ARX Models
	Changing the Nonlinear ARX Model Structure
	Selecting a Subset of Regressors in the Nonlinear Block
	Changing the Nonlinearity Estimator in a Nonlinear ARX Model
	Selecting the Best Model

	Estimating Hammerstein-Wiener Models
	Estimating Hammerstein-Wiener Models with Default Settings
	Plotting the Nonlinearities and Linear Transfer Function
	Changing the Hammerstein-Wiener Model Structure
	Changing the Nonlinearity Estimator in a Hammerstein-Wiener Mode
	Selecting the Best Model

	Index

	tables
	Products That Extend System Identification Toolbox
	Supported Continuous-Time Models
	Supported Discrete-Time Models

